sglang_v0.5.2/flashinfer_0.3.1/csrc/batch_attention.cu

189 lines
8.7 KiB
Plaintext

/*
* Copyright (c) 2025 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <flashinfer/attention/mask.cuh>
#include <flashinfer/attention/scheduler.cuh>
#include <flashinfer/layout.cuh>
#include <flashinfer/pos_enc.cuh>
#include <optional>
#include "batch_attention_config.inc"
#include "pytorch_conversion_utils.h"
#include "pytorch_extension_utils.h"
namespace flashinfer {
template <uint32_t CTA_TILE_Q_1, uint32_t CTA_TILE_Q_2, uint32_t HEAD_DIM_QK, uint32_t HEAD_DIM_VO,
MaskMode MASK_MODE, typename AttentionVariant, typename Params>
cudaError_t BatchPagedAttentionPersistent(const Params params_1, const Params params_2,
const uint32_t num_blks_x, const uint32_t num_blks_y,
const cudaStream_t stream);
} // namespace flashinfer
using namespace flashinfer;
at::Tensor BatchPagedAttentionPlan(at::Tensor float_workspace_buffer,
at::Tensor int_workspace_buffer,
at::Tensor page_locked_int_workspace_buffer,
at::Tensor qo_indptr, at::Tensor kv_indptr, at::Tensor kv_len,
int64_t batch_size, int64_t num_qo_heads, int64_t num_kv_heads,
int64_t head_dim_o, bool causal) {
size_t float_workspace_size_in_bytes =
float_workspace_buffer.size(0) * float_workspace_buffer.element_size();
size_t int_workspace_size_in_bytes =
int_workspace_buffer.size(0) * int_workspace_buffer.element_size();
HolisticPlanInfo<2> plan_info;
const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device());
const cudaStream_t stream = c10::cuda::getCurrentCUDAStream();
cudaError_t status = TwoStageHolisticPlan<IdType>(
float_workspace_buffer.data_ptr(), float_workspace_size_in_bytes,
int_workspace_buffer.data_ptr(), page_locked_int_workspace_buffer.data_ptr(),
int_workspace_size_in_bytes, plan_info, qo_indptr.data_ptr<IdType>(),
kv_indptr.data_ptr<IdType>(), kv_len.data_ptr<IdType>(), batch_size, num_qo_heads,
num_kv_heads, head_dim_o, causal, stream);
TORCH_CHECK(status == cudaSuccess,
"Failed to plan persistent paged attention, error: ", cudaGetErrorString(status));
return vec_to_tensor(plan_info.ToVector());
}
void BatchPagedAttentionRun(at::Tensor float_workspace_buffer, at::Tensor int_workspace_buffer,
at::Tensor plan_info_vec, at::Tensor q, at::Tensor k_cache,
at::Tensor v_cache, at::Tensor kv_indices, at::Tensor o,
std::optional<at::Tensor> maybe_lse, int64_t mask_mode_code,
int64_t layout_code, int64_t num_qo_heads, int64_t num_kv_heads,
int64_t page_size, double sm_scale,
double logits_soft_cap ADDITIONAL_FUNC_PARAMS PROFILER_FUNC_PARAMS) {
HolisticPlanInfo<2> plan_info;
plan_info.FromVector(tensor_to_vec(plan_info_vec));
auto device = q.device();
void* float_buffer_ptr = float_workspace_buffer.data_ptr();
void* int_buffer_ptr = int_workspace_buffer.data_ptr();
const MaskMode mask_mode = static_cast<MaskMode>(mask_mode_code);
auto q_scalar_type = q.scalar_type();
auto kv_scalar_type = k_cache.scalar_type();
// NOTE (Yilong): assume both q and o are NHD
unsigned int q_stride_n = q.stride(0);
unsigned int q_stride_h = q.stride(1);
// layout only constraint paged KV
const QKVLayout kv_layout = static_cast<QKVLayout>(layout_code);
unsigned int k_stride_page = k_cache.stride(0);
unsigned int v_stride_page = v_cache.stride(0);
unsigned int k_stride_n, k_stride_h, v_stride_n, v_stride_h;
if (kv_layout == QKVLayout::kNHD) {
k_stride_h = k_cache.stride(2);
k_stride_n = k_cache.stride(1);
v_stride_h = v_cache.stride(2);
v_stride_n = v_cache.stride(1);
} else {
k_stride_h = k_cache.stride(1);
k_stride_n = k_cache.stride(2);
v_stride_h = v_cache.stride(1);
v_stride_n = v_cache.stride(2);
}
const c10::cuda::OptionalCUDAGuard device_guard(device);
const cudaStream_t stream = c10::cuda::getCurrentCUDAStream();
DISPATCH_context(
DTypeQ, DTypeKV, DTypeO, IdType, MASK_MODE, HEAD_DIM_QK, HEAD_DIM_VO, POS_ENCODING_MODE,
AttentionVariant, PersistentParams, [&] {
PersistentParams params[2];
IdType* len_kv_chunk =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.len_kv_chunk_offset);
for (int i = 0; i < 2; i++) {
params[i].q = static_cast<DTypeQ*>(q.data_ptr());
params[i].k = static_cast<DTypeKV*>(k_cache.data_ptr());
params[i].v = static_cast<DTypeKV*>(v_cache.data_ptr());
params[i].q_indptr =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].q_indptr_offset);
params[i].kv_indptr =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].kv_indptr_offset);
params[i].partial_indptr = GetPtrFromBaseOffset<IdType>(
int_buffer_ptr, plan_info.tasks[i].partial_indptr_offset);
params[i].kv_indices = static_cast<int*>(kv_indices.data_ptr());
params[i].q_len =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].q_len_offset);
params[i].kv_len =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].kv_len_offset);
params[i].q_start =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].q_start_offset);
params[i].kv_start =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].kv_start_offset);
params[i].kv_end =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].kv_end_offset);
params[i].kv_head_idx_arr =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].kv_head_idx_offset);
params[i].work_indptr =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.tasks[i].work_indptr_offset);
params[i].len_kv_chunk = len_kv_chunk + i;
params[i].final_o = static_cast<DTypeO*>(o.data_ptr());
params[i].final_lse =
maybe_lse.has_value() ? static_cast<float*>(maybe_lse->data_ptr()) : nullptr;
params[i].partial_o =
GetPtrFromBaseOffset<DTypeO>(float_buffer_ptr, plan_info.partial_o_offset);
params[i].partial_lse =
GetPtrFromBaseOffset<float>(float_buffer_ptr, plan_info.partial_lse_offset);
// for state reduction
params[i].merge_indptr =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.merge_indptr_offset);
params[i].merge_o_indices =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.merge_o_indices_offset);
params[i].num_packed_qo_len =
GetPtrFromBaseOffset<IdType>(int_buffer_ptr, plan_info.num_qo_len_offset);
params[i].num_kv_heads = num_kv_heads;
params[i].gqa_group_size = uint_fastdiv(num_qo_heads / num_kv_heads);
params[i].page_size = uint_fastdiv(page_size);
params[i].q_stride_n = q_stride_n;
params[i].q_stride_h = q_stride_h;
params[i].k_stride_page = k_stride_page;
params[i].k_stride_h = k_stride_h;
params[i].k_stride_n = k_stride_n;
params[i].v_stride_page = v_stride_page;
params[i].v_stride_h = v_stride_h;
params[i].v_stride_n = v_stride_n;
params[i].sm_scale = sm_scale;
params[i].logits_soft_cap = logits_soft_cap;
// NOTE(Wenxuan) directly using the additional_params_decl from generate_additional_params
// will be problematic because of the params[i]
ADDITIONAL_PARAMS_SETTER
PROFILER_PARAMS_SETTER
}
cudaError_t status = BatchPagedAttentionPersistent<128, 16, HEAD_DIM_QK, HEAD_DIM_VO,
MASK_MODE, AttentionVariant>(
params[0], params[1], plan_info.num_blks_x, plan_info.num_blks_y, stream);
TORCH_CHECK(status == cudaSuccess, "Failed to run persistent paged attention, error: ",
cudaGetErrorString(status));
return true;
});
}