75 lines
3.6 KiB
Plaintext
75 lines
3.6 KiB
Plaintext
#include <flashinfer/attention/decode.cuh>
|
|
#include <flashinfer/attention/scheduler.cuh>
|
|
#include <optional>
|
|
|
|
#include "mla_config.inc"
|
|
#include "pytorch_conversion_utils.h"
|
|
#include "pytorch_extension_utils.h"
|
|
|
|
using namespace flashinfer;
|
|
|
|
void BatchDecodeWithPagedKVCacheRunMLA(
|
|
at::Tensor float_workspace_buffer, at::Tensor int_workspace_buffer, at::Tensor plan_info_vec,
|
|
at::Tensor q_nope, at::Tensor q_pe, at::Tensor paged_ckv_cache, at::Tensor paged_kpe_cache,
|
|
at::Tensor paged_kv_indptr, at::Tensor paged_kv_indices, at::Tensor paged_kv_last_page_len,
|
|
at::Tensor o, double sm_scale, int64_t window_left, double logits_soft_cap, double rope_scale,
|
|
double rope_theta, std::optional<at::Tensor> maybe_lse, bool enable_pdl, int64_t cuda_stream) {
|
|
DecodePlanInfo plan_info;
|
|
plan_info.FromVector(tensor_to_vec(plan_info_vec));
|
|
|
|
auto device = q_nope.device();
|
|
int64_t batch_size = q_nope.size(0);
|
|
int64_t num_qo_heads = q_nope.size(1);
|
|
int64_t page_size = paged_ckv_cache.size(1);
|
|
|
|
if (maybe_lse) {
|
|
const auto& lse = *maybe_lse;
|
|
TORCH_CHECK(lse.size(0) == batch_size, lse.size(0), q_nope.size(0));
|
|
TORCH_CHECK(lse.size(1) == num_qo_heads, lse.size(1), q_nope.size(1));
|
|
}
|
|
|
|
TORCH_CHECK(logits_soft_cap >= 0.f, "logits_soft_cap must be non-negative");
|
|
|
|
void* float_buffer = static_cast<void*>(float_workspace_buffer.data_ptr());
|
|
void* int_buffer = static_cast<void*>(int_workspace_buffer.data_ptr());
|
|
|
|
paged_kv_mla_t<DTypeKV, IdType> paged_kv(
|
|
page_size, HEAD_DIM_CKV, HEAD_DIM_KPE, batch_size,
|
|
static_cast<DTypeKV*>(paged_ckv_cache.data_ptr()), paged_ckv_cache.strides().data(),
|
|
static_cast<DTypeKV*>(paged_kpe_cache.data_ptr()), paged_kpe_cache.strides().data(),
|
|
static_cast<IdType*>(paged_kv_indices.data_ptr()),
|
|
static_cast<IdType*>(paged_kv_indptr.data_ptr()),
|
|
static_cast<IdType*>(paged_kv_last_page_len.data_ptr()));
|
|
Params params(static_cast<DTypeQ*>(q_nope.data_ptr()), static_cast<DTypeQ*>(q_pe.data_ptr()),
|
|
/*q_offset=*/nullptr, paged_kv, static_cast<DTypeO*>(o.data_ptr()),
|
|
/*lse=*/(maybe_lse ? static_cast<float*>(maybe_lse->data_ptr()) : nullptr),
|
|
num_qo_heads, window_left, logits_soft_cap, sm_scale, rope_scale, rope_theta);
|
|
|
|
DTypeO* tmp_v = nullptr;
|
|
float* tmp_s = nullptr;
|
|
params.request_indices =
|
|
GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.request_indices_offset);
|
|
params.kv_tile_indices =
|
|
GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.kv_tile_indices_offset);
|
|
params.o_indptr = GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.o_indptr_offset);
|
|
params.kv_chunk_size_ptr =
|
|
GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.kv_chunk_size_ptr_offset);
|
|
if (plan_info.split_kv) {
|
|
tmp_v = GetPtrFromBaseOffset<DTypeO>(float_buffer, plan_info.v_offset);
|
|
tmp_s = GetPtrFromBaseOffset<float>(float_buffer, plan_info.s_offset);
|
|
if (plan_info.enable_cuda_graph) {
|
|
params.block_valid_mask =
|
|
GetPtrFromBaseOffset<bool>(int_buffer, plan_info.block_valid_mask_offset);
|
|
}
|
|
}
|
|
params.padded_batch_size = plan_info.padded_batch_size;
|
|
|
|
cudaStream_t stream = reinterpret_cast<cudaStream_t>(cuda_stream);
|
|
cudaError_t status =
|
|
BatchDecodeWithPagedKVCacheDispatchedMLA<HEAD_DIM_CKV, HEAD_DIM_KPE, AttentionVariant,
|
|
Params>(params, tmp_v, tmp_s, enable_pdl,
|
|
/*stream=*/stream);
|
|
TORCH_CHECK(status == cudaSuccess, "BatchDecodeWithPagedKVCache failed with error ",
|
|
cudaGetErrorString(status));
|
|
}
|