sglang_v0.5.2/flashinfer_0.3.1/csrc/gemm_groupwise_sm120.cu

139 lines
8.2 KiB
Plaintext

/*
* Copyright (c) 2025 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <flashinfer/cutlass_utils.cuh>
#include "pytorch_extension_utils.h"
using namespace flashinfer;
#define DISPATCH_PYTORCH_INPUT_OUTPUT_DTYPE(input_dtype, output_dtype, c_type_in, c_type_out, ...) \
[&]() -> bool { \
return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(output_dtype, c_type_out, [&] { \
return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(input_dtype, c_type_in, \
[&] { return __VA_ARGS__(); }); \
}); \
}()
#define DISPATCH_SCALE_GRANULARITY(scale_granularity_m, scale_granularity_n, scale_granularity_k, \
SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, \
...) \
[&]() -> bool { \
/* SM120 Cooperative schedule uses 128x128x128 tile shape */ \
/* TODO (yongwww): PingPong schedule (64x128x128) will need additional dispatch logic */ \
constexpr int SCALE_GRANULARITY_K = 128; \
if (scale_granularity_k != 128) { \
TORCH_CHECK( \
false, \
"SM120 requires scale_granularity_k=128. CUTLASS enforces ScaleGranularityK must equal " \
"tile shape K dimension (128 for both Cooperative and PingPong schedules)."); \
return false; \
} \
/* Support (1,128,128) and (128,128,128) as per SM100's approach */ \
if (scale_granularity_m == 1 && scale_granularity_n == 128) { \
constexpr int SCALE_GRANULARITY_M = 1; \
constexpr int SCALE_GRANULARITY_N = 128; \
return __VA_ARGS__(); \
} else if (scale_granularity_m == 128 && scale_granularity_n == 128) { \
constexpr int SCALE_GRANULARITY_M = 128; \
constexpr int SCALE_GRANULARITY_N = 128; \
return __VA_ARGS__(); \
} \
TORCH_CHECK(false, "SM120: Unsupported scale granularity combination (", scale_granularity_m, \
",", scale_granularity_n, ",", scale_granularity_k, ")"); \
return false; \
}()
#define DISPATCH_SCALE_MAJOR_K(scale_major_mode, SCALE_MAJOR_K, ...) \
[&]() -> bool { \
if (scale_major_mode == "K") { \
constexpr bool SCALE_MAJOR_K = true; \
return __VA_ARGS__(); \
} else if (scale_major_mode == "MN") { \
constexpr bool SCALE_MAJOR_K = false; \
return __VA_ARGS__(); \
} \
TORCH_CHECK(false, "Unsupported Scale Major Mode"); \
return false; \
}()
namespace flashinfer {
namespace gemm {
template <int ScaleGranularityM, int ScaleGranularityN, int ScaleGranularityK, bool ScaleMajorK,
typename DTypeIn, typename DTypeOut>
cudaError_t CutlassGroupwiseScaledGEMMSM120(void* float_buffer, size_t float_buffer_size_in_bytes,
DTypeIn* A_ptr, DTypeIn* B_ptr, float* SFA_ptr,
float* SFB_ptr, DTypeOut* C_ptr, int m, int n, int k,
int l, cudaStream_t stream);
} // namespace gemm
} // namespace flashinfer
void CutlassGemmGroupwiseScaledSM120(at::Tensor float_workspace_buffer, at::Tensor A, at::Tensor B,
at::Tensor SFA, at::Tensor SFB, at::Tensor C,
int64_t scale_granularity_m, int64_t scale_granularity_n,
int64_t scale_granularity_k, std::string scale_major_mode) {
const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device());
auto stream = at::cuda::getCurrentCUDAStream();
// Ensure scales are contiguous
// Note: We keep the original shape and let the kernel's layout handle interpretation
at::Tensor SFA_contig = SFA.is_contiguous() ? SFA : SFA.contiguous();
at::Tensor SFB_contig = SFB.is_contiguous() ? SFB : SFB.contiguous();
DISPATCH_SCALE_MAJOR_K(scale_major_mode, SCALE_MAJOR_K, [&] {
return DISPATCH_PYTORCH_INPUT_OUTPUT_DTYPE(
A.scalar_type(), C.scalar_type(), c_type_in, c_type_out, [&] {
return DISPATCH_SCALE_GRANULARITY(
scale_granularity_m, scale_granularity_n, scale_granularity_k, SCALE_GRANULARITY_M,
SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, [&] {
using cutlass_t_in = cutlass_dtype_t<c_type_in>;
using cutlass_t_out = cutlass_dtype_t<c_type_out>;
// Handle both 2D and 3D tensors (BMM)
int m, n, k, l;
if (A.dim() == 2) {
// 2D case: simple matrix multiplication
m = A.size(0);
k = A.size(1);
n = B.size(0);
l = 1; // no batch dimension
} else if (A.dim() == 3) {
// 3D case: batch matrix multiplication
l = A.size(0); // batch size
m = A.size(1); // per-batch m dimension
k = A.size(2); // per-batch k dimension
n = B.size(2); // per-batch n dimension (B is [batch, k, n] column-major)
} else {
return false; // Unsupported tensor dimension
}
auto status = flashinfer::gemm::CutlassGroupwiseScaledGEMMSM120<
SCALE_GRANULARITY_M, SCALE_GRANULARITY_N, SCALE_GRANULARITY_K, SCALE_MAJOR_K>(
static_cast<void*>(float_workspace_buffer.data_ptr()),
float_workspace_buffer.element_size() * float_workspace_buffer.numel(),
static_cast<cutlass_t_in*>(A.data_ptr()),
static_cast<cutlass_t_in*>(B.data_ptr()),
static_cast<float*>(SFA_contig.data_ptr()),
static_cast<float*>(SFB_contig.data_ptr()),
static_cast<cutlass_t_out*>(C.data_ptr()), m, n, k, l,
stream); // C is the output (D)
return status == cudaSuccess;
});
});
});
}