sglang_v0.5.2/flashinfer_0.3.1/csrc/nv_internal/cpp/common/envUtils.cpp

332 lines
9.8 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights
* reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/envUtils.h"
#include <cstddef>
#include <cstdlib>
#include <mutex>
#include <optional>
#include <string>
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/stringUtils.h"
namespace tensorrt_llm::common {
std::optional<int32_t> getIntEnv(char const* name) {
char const* const env = std::getenv(name);
if (env == nullptr) {
return std::nullopt;
}
int32_t const val = std::stoi(env);
return {val};
};
std::optional<size_t> getUInt64Env(char const* name) {
char const* const env = std::getenv(name);
if (env == nullptr) {
return std::nullopt;
}
size_t const val = std::stoull(env);
return {val};
};
std::optional<std::string> getStrEnv(char const* name) {
char const* const env = std::getenv(name);
if (env == nullptr) {
return std::nullopt;
}
return std::string(env);
}
// Returns true if the env variable exists and is set to "1"
static bool getBoolEnv(char const* name) {
char const* env = std::getenv(name);
return env && env[0] == '1' && env[1] == '\0';
}
std::string trim(std::string const& str) {
size_t start = str.find_first_not_of(" \t\n\r");
size_t end = str.find_last_not_of(" \t\n\r");
return (start == std::string::npos || end == std::string::npos)
? ""
: str.substr(start, end - start + 1);
}
// Parse memory size
size_t parseMemorySize(std::string const& input) {
std::string str = trim(input);
size_t unitPos = 0;
while (unitPos < str.size() && (std::isdigit(str[unitPos]) || str[unitPos] == '.')) {
++unitPos;
}
// Split the numeric part and the unit part
std::string numberPart = str.substr(0, unitPos);
std::string unitPart = str.substr(unitPos);
double value = 0;
try {
value = std::stod(numberPart);
} catch (std::invalid_argument const& e) {
throw std::invalid_argument("Invalid number format in memory size: " + input);
}
toLower(unitPart);
size_t multiplier = 1;
if (unitPart == "b") {
multiplier = 1;
} else if (unitPart == "kb") {
multiplier = 1024;
} else if (unitPart == "mb") {
multiplier = 1024 * 1024;
} else if (unitPart == "gb") {
multiplier = 1024 * 1024 * 1024;
} else if (unitPart == "tb") {
multiplier = static_cast<size_t>(pow(1024.0, 4));
} else {
throw std::invalid_argument("Unknown unit in memory size: " + unitPart);
}
return static_cast<size_t>(value * multiplier);
}
// XQA kernels (optimized kernels for generation phase).
bool forceXQAKernels() {
static bool const forceXQA =
(getIntEnv("TRTLLM_FORCE_XQA").value_or(0) != 0) || getEnvForceDeterministicAttention();
return forceXQA;
}
std::optional<bool> getEnvEnableXQAJIT() {
static std::optional<bool> val = [] {
std::optional<bool> val = std::nullopt;
auto const tmp = getIntEnv("TRTLLM_ENABLE_XQA_JIT");
if (tmp.has_value()) {
val = static_cast<bool>(tmp.value());
}
return val;
}();
return val;
}
std::optional<int> getEnvXqaBlocksPerSequence() {
static auto const xqaBlocksPerSeq = []() {
auto const val = getIntEnv("TRTLLM_XQA_BLOCKS_PER_SEQUENCE");
return (val.has_value() && *val <= 0) ? std::nullopt : val;
}();
return xqaBlocksPerSeq;
}
// Tune the number of blocks per sequence for accuracy/performance purpose.
bool getEnvMmhaMultiblockDebug() {
static std::once_flag flag;
static bool forceMmhaMaxSeqLenTile = false;
std::call_once(flag, [&] {
char const* enable_mmha_debug_var = std::getenv("TRTLLM_ENABLE_MMHA_MULTI_BLOCK_DEBUG");
if (enable_mmha_debug_var) {
if (enable_mmha_debug_var[0] == '1' && enable_mmha_debug_var[1] == '\0') {
forceMmhaMaxSeqLenTile = true;
}
}
});
return forceMmhaMaxSeqLenTile;
}
int getEnvMmhaBlocksPerSequence() {
static std::once_flag flag;
static int mmhaBlocksPerSequence = 0;
std::call_once(flag, [&]() {
char const* mmhaBlocksPerSequenceEnv = std::getenv("TRTLLM_MMHA_BLOCKS_PER_SEQUENCE");
if (mmhaBlocksPerSequenceEnv) {
mmhaBlocksPerSequence = std::atoi(mmhaBlocksPerSequenceEnv);
if (mmhaBlocksPerSequence <= 0) {
TLLM_LOG_WARNING(
"Invalid value for TRTLLM_MMHA_BLOCKS_PER_SEQUENCE. Will use default values instead!");
}
}
});
return mmhaBlocksPerSequence;
}
int getEnvMmhaKernelBlockSize() {
static std::once_flag flag;
static int mmhaKernelBlockSize = 0;
std::call_once(flag, [&]() {
char const* mmhaKernelBlockSizeEnv = std::getenv("TRTLLM_MMHA_KERNEL_BLOCK_SIZE");
if (mmhaKernelBlockSizeEnv) {
mmhaKernelBlockSize = std::atoi(mmhaKernelBlockSizeEnv);
if (mmhaKernelBlockSize <= 0) {
TLLM_LOG_WARNING(
"Invalid value for TRTLLM_MMHA_KERNEL_BLOCK_SIZE. Will use default values instead!");
}
}
});
return mmhaKernelBlockSize;
}
bool getEnvUseTileSizeKv64ForTrtllmGen() {
static bool const useTileSizeKv64 = getBoolEnv("TRTLLM_GEN_ENABLE_TILE_SIZE_KV64");
return useTileSizeKv64;
}
bool getEnvUseUCXKvCache() {
static bool const useUCXKVCache = getBoolEnv("TRTLLM_USE_UCX_KVCACHE");
return useUCXKVCache;
}
bool getEnvUseMPIKvCache() {
static bool const useMPIKVCache = getBoolEnv("TRTLLM_USE_MPI_KVCACHE");
return useMPIKVCache;
}
bool getEnvUseNixlKvCache() {
static bool const useNixlKvCache = getBoolEnv("TRTLLM_USE_NIXL_KVCACHE");
return useNixlKvCache;
}
std::string getEnvUCXInterface() {
static std::once_flag flag;
static std::string ucxInterface;
std::call_once(flag, [&]() {
char const* ucx_interface = std::getenv("TRTLLM_UCX_INTERFACE");
if (ucx_interface) {
ucxInterface = ucx_interface;
}
});
return ucxInterface;
}
bool getEnvDisaggLayerwise() {
static bool const disaggLayerwise = getBoolEnv("TRTLLM_DISAGG_LAYERWISE");
return disaggLayerwise;
}
bool getEnvParallelCacheSend() {
static bool const parallelCacheSend = getBoolEnv("TRTLLM_PARALLEL_CACHE_SEND");
return parallelCacheSend;
}
bool getEnvRequestKVCacheConcurrent() {
static bool const requestKVCacheConcurrent = getBoolEnv("TRTLLM_REQUEST_KV_CACHE_CONCURRENT");
return requestKVCacheConcurrent;
}
bool getEnvDisableKVCacheTransferOverlap() {
static bool const disableKVCacheTransferOverlap =
getBoolEnv("TRTLLM_DISABLE_KV_CACHE_TRANSFER_OVERLAP");
return disableKVCacheTransferOverlap;
}
bool getEnvEnableReceiveKVCacheParallel() {
static bool const enableReceiveParallel = getBoolEnv("TRTLLM_ENABLE_KVCACHE_RECEIVE_PARALLEL");
return enableReceiveParallel;
}
bool getEnvTryZCopyForKVCacheTransfer() {
static bool const zcopyForSysmmetricKVCache = getBoolEnv("TRTLLM_TRY_ZCOPY_FOR_KVCACHE_TRANSFER");
return zcopyForSysmmetricKVCache;
}
bool getEnvForceDeterministic() {
static bool const forceDeterministic = getBoolEnv("FORCE_DETERMINISTIC");
return forceDeterministic;
}
bool getEnvForceDeterministicMOE() {
static bool const forceDeterministic =
getBoolEnv("FORCE_MOE_KERNEL_DETERMINISTIC") || getEnvForceDeterministic();
return forceDeterministic;
}
bool getEnvForceDeterministicAttention() {
static bool const forceDeterministic =
getBoolEnv("FORCE_ATTENTION_KERNEL_DETERMINISTIC") || getEnvForceDeterministic();
return forceDeterministic;
}
bool getEnvForceDeterministicAllReduce() {
static bool const forceDeterministic =
getBoolEnv("FORCE_ALL_REDUCE_DETERMINISTIC") || getEnvForceDeterministic();
return forceDeterministic;
}
size_t getEnvAllReduceWorkspaceSize() {
static size_t const workspaceSize =
getUInt64Env("FORCE_ALLREDUCE_KERNEL_WORKSPACE_SIZE").value_or(1000 * 1000 * 1000);
return workspaceSize;
}
std::string getEnvKVCacheTransferOutputPath() {
static std::string outputPath = getStrEnv("TRTLLM_KVCACHE_TIME_OUTPUT_PATH").value_or("");
return outputPath;
}
bool getEnvKVCacheTransferUseAsyncBuffer() {
static bool const useAsyncBuffer = getBoolEnv("TRTLLM_KVCACHE_TRANSFER_USE_ASYNC_BUFFER");
return useAsyncBuffer;
}
bool getEnvKVCacheTransferUseSyncBuffer() {
static bool const useSyncBuffer = getBoolEnv("TRTLLM_KVCACHE_TRANSFER_USE_SYNC_BUFFER");
return useSyncBuffer;
}
size_t getEnvKVCacheSendMaxConcurrenceNum() {
static size_t const maxConcurrenceNum =
getUInt64Env("TRTLLM_KVCACHE_SEND_MAX_CONCURRENCY_NUM").value_or(2);
return maxConcurrenceNum;
}
size_t getEnvKVCacheRecvBufferCount() {
static size_t const recvBufferCount =
getUInt64Env("TRTLLM_KVCACHE_RECV_BUFFER_COUNT").value_or(2);
return recvBufferCount;
}
size_t getEnvMemSizeForKVCacheTransferBuffer() {
static std::once_flag flag;
static size_t memSizeForKVCacheTransferBuffer = 0;
std::call_once(flag, [&]() {
char const* memSizeForKVCacheTransferBufferEnv =
std::getenv("TRTLLM_KVCACHE_TRANSFER_BUFFER_SIZE");
if (memSizeForKVCacheTransferBufferEnv) {
memSizeForKVCacheTransferBuffer = parseMemorySize(memSizeForKVCacheTransferBufferEnv);
} else {
memSizeForKVCacheTransferBuffer = parseMemorySize("512MB");
}
});
return memSizeForKVCacheTransferBuffer;
}
uint16_t getEnvNixlPort() {
static uint16_t const nixlPort = getUInt64Env("TRTLLM_NIXL_PORT").value_or(0);
return nixlPort;
}
bool getEnvDisaggBenchmarkGenOnly() { return getBoolEnv("TRTLLM_DISAGG_BENCHMARK_GEN_ONLY"); }
} // namespace tensorrt_llm::common