sglang_v0.5.2/flashinfer_0.3.1/flashinfer/comm/vllm_ar.py

156 lines
4.6 KiB
Python

"""
Copyright (c) 2025 by FlashInfer team.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import functools
from types import SimpleNamespace
from typing import List, Tuple
import torch
from ..jit import JitSpec
from ..jit import env as jit_env
from ..jit import gen_jit_spec
from ..utils import register_custom_op
def gen_vllm_comm_module() -> JitSpec:
return gen_jit_spec(
"vllm_comm",
[
jit_env.FLASHINFER_CSRC_DIR / "vllm_custom_all_reduce.cu",
],
)
@functools.cache
def get_vllm_comm_module():
module = gen_vllm_comm_module().build_and_load()
# torch library for all
@register_custom_op(
"flashinfer::init_custom_ar",
mutates_args=["ipc_ptrs", "rank_data", "rank", "full_nvlink"],
)
def init_custom_ar(
ipc_ptrs: List[int], rank_data: torch.Tensor, rank: int, full_nvlink: bool
) -> int:
return module.init_custom_ar(ipc_ptrs, rank_data, rank, full_nvlink)
@register_custom_op("flashinfer::dispose", mutates_args=["fa"])
def dispose(fa: int) -> None:
module.dispose(fa)
@register_custom_op("flashinfer::get_graph_buffer_ipc_meta", mutates_args=["fa"])
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
return module.get_graph_buffer_ipc_meta(fa)
@register_custom_op(
"flashinfer::register_buffer", mutates_args=["fa", "fake_ipc_ptrs"]
)
def register_buffer(fa: int, fake_ipc_ptrs: List[int]) -> None:
return module.register_buffer(fa, fake_ipc_ptrs)
@register_custom_op(
"flashinfer::register_graph_buffers",
mutates_args=["fa", "handles", "offsets"],
)
def register_graph_buffers(
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
module.register_graph_buffers(fa, handles, offsets)
@register_custom_op("flashinfer::meta_size", mutates_args=[])
def meta_size() -> int:
return module.meta_size()
@register_custom_op(
"flashinfer::all_reduce",
mutates_args=["out", "reg_buffer", "reg_buffer_sz_bytes"],
)
def all_reduce(
fa: int,
inp: torch.Tensor,
out: torch.Tensor,
reg_buffer: int,
reg_buffer_sz_bytes: int,
num_ctas: int,
) -> None:
module.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes, num_ctas)
return SimpleNamespace(
init_custom_ar=init_custom_ar,
dispose=dispose,
get_graph_buffer_ipc_meta=get_graph_buffer_ipc_meta,
register_buffer=register_buffer,
register_graph_buffers=register_graph_buffers,
meta_size=meta_size,
all_reduce=all_reduce,
)
def init_custom_ar(
ipc_tensors: List[int], rank_data: torch.Tensor, rank: int, full_nvlink: bool
) -> int:
return get_vllm_comm_module().init_custom_ar(
ipc_tensors, rank_data, rank, full_nvlink
)
def dispose(fa: int) -> None:
get_vllm_comm_module().dispose(fa)
def all_reduce(
fa: int,
inp: torch.Tensor,
out: torch.Tensor,
reg_buffer: int,
reg_buffer_sz_bytes: int,
num_ctas: int,
) -> None:
"""Performs an out-of-place all reduce.
Args:
fa: The handle to the custom all reduce.
inp: The input tensor to all reduce.
out: The output tensor to all reduce.
reg_buffer: The register buffer to all reduce.
reg_buffer_sz_bytes: The size of the register buffer.
num_ctas: The number of CTAs to use for the all reduce.
CTA upper bounds: 36. Generally, we can saturate the bandwidth even with small amount the SMs.
"""
get_vllm_comm_module().all_reduce(
fa, inp, out, reg_buffer, reg_buffer_sz_bytes, num_ctas
)
def get_graph_buffer_ipc_meta(fa) -> Tuple[List[int], List[int]]:
return get_vllm_comm_module().get_graph_buffer_ipc_meta(fa)
def register_buffer(fa: int, fake_ipc_ptrs: List[int]) -> None:
return get_vllm_comm_module().register_buffer(fa, fake_ipc_ptrs)
def register_graph_buffers(
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
get_vllm_comm_module().register_graph_buffers(fa, handles, offsets)
def meta_size() -> int:
return get_vllm_comm_module().meta_size()