sglang_v0.5.2/flashinfer_0.3.1/flashinfer/xqa.py

208 lines
5.6 KiB
Python

"""
Copyright (c) 2024 by FlashInfer team.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import functools
from types import SimpleNamespace
import torch
from .jit import JitSpec
from .jit import env as jit_env
from .jit import gen_jit_spec, sm90a_nvcc_flags
from .utils import (
register_custom_op,
register_fake_op,
)
xqa_nvcc_flags = [
"-DNDEBUG=1",
"-DBEAM_WIDTH=1",
"-DCACHE_ELEM_ENUM=0",
"-DUSE_CUSTOM_BARRIER=1",
"-DLOW_PREC_OUTPUT=0",
"-DSPEC_DEC=0",
]
def gen_xqa_module(
use_fp16: bool,
token_per_page: int,
head_size: int,
head_grp_size: int,
use_sliding_window: bool,
) -> JitSpec:
if use_fp16:
flag_use_fp16 = ["-DINPUT_FP16=1", "-DDTYPE=__half"]
else:
flag_use_fp16 = ["-DINPUT_FP16=0", "-DDTYPE=__nv_bfloat16"]
if token_per_page not in [16, 32, 64, 128]:
raise ValueError(
f"Invalid token_per_page: {token_per_page}, only 16, 32, 64, 128 are supported"
)
flag_tokens_per_page = [f"-DTOKENS_PER_PAGE={token_per_page}"]
if head_size % 16 != 0 or head_size > 256 or head_size < 16:
raise ValueError(
f"Invalid head_size: {head_size}, must be divisible by 16 and in range [16, 256]"
)
flag_head_size = [f"-DHEAD_ELEMS={head_size}"]
flag_head_grp_size = [f"-DHEAD_GRP_SIZE={head_grp_size}"]
if use_sliding_window:
flag_sliding_window = ["-DSLIDING_WINDOW=1"]
else:
flag_sliding_window = ["-DSLIDING_WINDOW=0"]
return gen_jit_spec(
f"xqa_use_fp16_{use_fp16}_token_per_page_{token_per_page}_head_size_{head_size}_head_grp_size_{head_grp_size}_use_sliding_window_{use_sliding_window}",
[
jit_env.FLASHINFER_CSRC_DIR / "xqa/mha.cu",
jit_env.FLASHINFER_CSRC_DIR / "xqa/xqa_wrapper.cu",
jit_env.FLASHINFER_CSRC_DIR / "flashinfer_xqa_ops.cu",
],
extra_cuda_cflags=xqa_nvcc_flags
+ sm90a_nvcc_flags
+ flag_tokens_per_page
+ flag_head_size
+ flag_use_fp16
+ flag_head_grp_size
+ flag_sliding_window,
)
@functools.cache
def get_xqa_module(
use_fp16: bool,
token_per_page: int,
head_size: int,
head_grp_size: int,
use_sliding_window: bool,
):
module = gen_xqa_module(
use_fp16, token_per_page, head_size, head_grp_size, use_sliding_window
).build_and_load()
@register_custom_op(
f"flashinfer::xqa_use_fp16_{use_fp16}_token_per_page_{token_per_page}_head_size_{head_size}_head_grp_size_{head_grp_size}_use_sliding_window_{use_sliding_window}",
mutates_args=("output", "scratch"),
)
def xqa(
multiProcessorCount: int,
nbKHeads: int,
slidingWinSize: int,
qScale: float,
output: torch.Tensor,
q: torch.Tensor,
attentionSinks: torch.Tensor,
pool: torch.Tensor,
kvCachePageList: torch.Tensor,
maxSeqLen: int,
seqLen: torch.Tensor,
batchSize: int,
kvCacheScale: torch.Tensor,
semaphores: torch.Tensor,
scratch: torch.Tensor,
) -> None:
module.xqa_wrapper.default(
multiProcessorCount,
nbKHeads,
slidingWinSize,
qScale,
output,
q,
attentionSinks,
pool,
kvCachePageList,
maxSeqLen,
seqLen,
batchSize,
kvCacheScale,
semaphores,
scratch,
)
@register_fake_op(
f"flashinfer::xqa_use_fp16_{use_fp16}_token_per_page_{token_per_page}_head_size_{head_size}_head_grp_size_{head_grp_size}_use_sliding_window_{use_sliding_window}"
)
def _fake_xqa(
multiProcessorCount: int,
nbKHeads: int,
slidingWinSize: int,
qScale: float,
output: torch.Tensor,
q: torch.Tensor,
attentionSinks: torch.Tensor,
pool: torch.Tensor,
kvCachePageList: torch.Tensor,
maxSeqLen: int,
seqLen: torch.Tensor,
batchSize: int,
kvCacheScale: torch.Tensor,
semaphores: torch.Tensor,
scratch: torch.Tensor,
) -> None:
pass
return SimpleNamespace(
xqa=xqa,
)
def xqa(
use_fp16: bool,
token_per_page: int,
head_size: int,
head_grp_size: int,
use_sliding_window: bool,
sliding_win_size: int,
multiProcessorCount: int,
nbKHeads: int,
qScale: float,
output: torch.Tensor,
q: torch.Tensor,
attentionSinks: torch.Tensor,
pool: torch.Tensor,
kvCachePageList: torch.Tensor,
maxSeqLen: int,
seqLen: torch.Tensor,
batchSize: int,
kvCacheScale: torch.Tensor,
semaphores: torch.Tensor,
scratch: torch.Tensor,
) -> None:
xqa_module = get_xqa_module(
use_fp16, token_per_page, head_size, head_grp_size, use_sliding_window
)
xqa_module.xqa(
multiProcessorCount,
nbKHeads,
sliding_win_size if use_sliding_window else 0,
qScale,
output,
q,
attentionSinks,
pool,
kvCachePageList,
maxSeqLen,
seqLen,
batchSize,
kvCacheScale,
semaphores,
scratch,
)