sglang_v0.5.2/flashinfer_0.3.1/include/flashinfer/permuted_smem.cuh

185 lines
6.2 KiB
Plaintext

/*
* Copyright (c) 2023 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLASHINFER_PERMUTED_SMEM_CUH_
#define FLASHINFER_PERMUTED_SMEM_CUH_
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <cuda/pipeline>
#include "cp_async.cuh"
#include "mma.cuh"
namespace flashinfer {
enum class SwizzleMode {
k64B,
k128B,
};
// Use 128bit as the granularity to fetch/store data per thread to maximize memory bandwidth
using b128_t = uint4;
/*!
* \brief Compute the number of elements that can be stored in a b128_t.
* \tparam T The data type of the elements.
*/
template <typename T>
constexpr __host__ __device__ __forceinline__ uint32_t upcast_size() {
return sizeof(b128_t) / sizeof(T);
}
template <SwizzleMode swizzle_mode, uint32_t stride>
__device__ __forceinline__ uint32_t get_permuted_offset(uint32_t i, uint32_t j) {
if constexpr (swizzle_mode == SwizzleMode::k128B) {
return i * stride + (j ^ (i % 8));
} else {
// swizzle_mode == SwizzleMode::k64B
return i * stride + (j ^ ((i / 2) % 4));
}
}
/*!
* \brief The shared memory wrapper.
*/
template <SwizzleMode swizzle_mode>
struct smem_t {
// The base pointer.
b128_t* base;
__device__ __forceinline__ smem_t() : base(nullptr) {}
template <typename T>
__device__ __forceinline__ smem_t(T* base) : base((b128_t*)base) {}
/*!
* \brief Compute the element offset given coordinates in a permuted shared memory.
* \tparam stride The stride (in terms of b128_t's) in the permuted shared memory.
* \param i The row index.
* \param j The column index.
*/
template <uint32_t stride>
static __device__ __forceinline__ uint32_t get_permuted_offset(uint32_t i, uint32_t j) {
if constexpr (swizzle_mode == SwizzleMode::k128B) {
return i * stride + (j ^ (i % 8));
} else {
// swizzle_mode == SwizzleMode::k64B
static_assert(stride == 4);
return i * stride + (j ^ ((i / 2) % 4));
}
}
template <uint32_t step_size>
static __device__ __forceinline__ uint32_t advance_offset_by_column(uint32_t offset,
uint32_t step_idx) {
if constexpr (swizzle_mode == SwizzleMode::k128B) {
static_assert(step_size == 2 || step_size == 4 || step_size % 8 == 0,
"Unsupported step size");
if constexpr (step_size == 2) {
return (offset ^ (0x2 + (0x4 * (step_idx % 2 == 1)))) + (step_idx % 4 == 3) * 8;
} else if constexpr (step_size == 4) {
return (offset ^ 0x4) + (step_idx % 2 == 1) * 8;
} else {
// step_size % 8 == 0
return offset + step_size;
}
} else {
// swizzle_mode == SwizzleMode::k64B
static_assert(step_size == 2, "Unsupported step size");
return (offset ^ 0x2) + (step_idx % 2 == 1) * 4;
}
}
template <uint32_t step_size, uint32_t row_stride>
static __device__ __forceinline__ uint32_t advance_offset_by_row(uint32_t offset) {
if constexpr (swizzle_mode == SwizzleMode::k128B) {
static_assert(step_size == 4 || step_size % 8 == 0, "Unsupported step size");
if constexpr (step_size == 4) {
return (offset ^ 0x4) + step_size * row_stride;
} else {
// step_size % 8 == 0
return offset + step_size * row_stride;
}
} else {
static_assert(step_size == 4 || step_size % 8 == 0, "Unsupported step size");
if constexpr (step_size == 4) {
return (offset ^ 0x2) + step_size * row_stride;
} else {
// step_size % 8 == 0
return offset + step_size * row_stride;
}
}
}
__device__ __forceinline__ void ldmatrix_m8n8x4(uint32_t offset, uint32_t* R) {
b128_t* smem_ptr = base + offset;
mma::ldmatrix_m8n8x4(R, smem_ptr);
}
__device__ __forceinline__ void ldmatrix_m8n8x4_left_half(uint32_t offset, uint32_t* R) {
b128_t* smem_ptr = base + offset;
mma::ldmatrix_m8n8x4_left_half(R, smem_ptr);
}
__device__ __forceinline__ void ldmatrix_m8n8x4_right_half(uint32_t offset, uint32_t* R) {
b128_t* smem_ptr = base + offset;
mma::ldmatrix_m8n8x4_right_half(R, smem_ptr);
}
__device__ __forceinline__ void stmatrix_m8n8x4(uint32_t offset, uint32_t* R) {
b128_t* smem_ptr = base + offset;
mma::stmatrix_m8n8x4(R, smem_ptr);
}
__device__ __forceinline__ void ldmatrix_m8n8x4_trans(uint32_t offset, uint32_t* R) {
b128_t* smem_ptr = base + offset;
mma::ldmatrix_m8n8x4_trans(R, smem_ptr);
}
__device__ __forceinline__ void ldmatrix_m8n8x4_trans_left_half(uint32_t offset, uint32_t* R) {
b128_t* smem_ptr = base + offset;
mma::ldmatrix_m8n8x4_trans_left_half(R, smem_ptr);
}
__device__ __forceinline__ void ldmatrix_m8n8x4_trans_right_half(uint32_t offset, uint32_t* R) {
b128_t* smem_ptr = base + offset;
mma::ldmatrix_m8n8x4_trans_right_half(R, smem_ptr);
}
template <cp_async::SharedMemFillMode fill_mode, typename T>
__device__ __forceinline__ void load_128b_async(uint32_t offset, const T* gptr, bool predicate) {
b128_t* smem_ptr = base + offset;
cp_async::pred_load_128b<cp_async::PrefetchMode::kPrefetch, fill_mode>(
smem_ptr, reinterpret_cast<const b128_t*>(gptr), predicate);
}
template <typename T>
__device__ __forceinline__ void load_128b_async(uint32_t offset, const T* gptr) {
b128_t* smem_ptr = base + offset;
cp_async::load_128b<cp_async::PrefetchMode::kPrefetch>(smem_ptr,
reinterpret_cast<const b128_t*>(gptr));
}
template <typename T>
__device__ __forceinline__ void store_128b(uint32_t offset, T* gptr) {
*reinterpret_cast<b128_t*>(gptr) = *(base + offset);
}
};
} // namespace flashinfer
#endif // FLASHINFER_PERMUTED_SMEM_CUH_