sglang_v0.5.2/pytorch_2.8.0/test/simulate_nccl_errors.py

51 lines
1.8 KiB
Python

import argparse
import logging
import os
import torch
import torch.distributed as c10d
FORMAT = "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
log = logging.getLogger("log")
log.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter(FORMAT)
handler.setFormatter(formatter)
log.addHandler(handler)
log.propagate = False # Prevent log duplication
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Simple script to simulate NCCL errors. The script is "
"supposed to be run on multiple different nodes simultaneously with "
"appropriate rank and world_size. The script run an allreduce() on "
"the rank 0 node and aborts all the other nodes to simulate an error "
"in NCCL"
)
parser.add_argument("addr", help="address of the master node to connect to.")
parser.add_argument("port", help="port of the master node to connect to.")
parser.add_argument("rank", help="rank of this node")
parser.add_argument("world_size", help="number of nodes in process group")
args = parser.parse_args()
rank = int(args.rank)
world_size = int(args.world_size)
port = int(args.port)
store = c10d.TCPStore(args.addr, port, world_size, rank == 0)
process_group = c10d.ProcessGroupNCCL(store, rank, world_size)
log.info("Running first allreduce")
process_group.allreduce(torch.rand(10).cuda(rank)).wait()
if rank == 0:
log.info("Running second allreduce only on rank 0")
work = process_group.allreduce(torch.rand(10).cuda(rank))
log.info("Waiting for allreduce to complete...")
work.wait()
log.info("Second allreduce successful: %s", work.is_success())
else:
log.info("Aborting all other ranks.")
os.abort()