sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/f32-simd-avx.cc

948 lines
31 KiB
C++

// Auto-generated file. Do not edit!
// Template: test/f32-simd.cc.in
// Generator: tools/xngen
//
// Copyright 2024 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
// This header needs to go first for the arch test macros.
#include "xnnpack/common.h"
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <random>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "xnnpack/isa-checks.h"
#include "xnnpack/simd/f32-avx.h"
#include "replicable_random_device.h"
namespace xnnpack {
class F32SimdAVXTest : public ::testing::Test {
protected:
void SetUp() override {
TEST_REQUIRES_X86_AVX;
inputs_.resize(3 * xnn_simd_size_f32);
output_.resize(xnn_simd_size_f32);
std::uniform_real_distribution<float> f32dist(-10.0f, 10.0f);
std::generate(inputs_.begin(), inputs_.end(),
[&]() { return f32dist(rng_); });
}
xnnpack::ReplicableRandomDevice rng_;
std::vector<float> inputs_;
std::vector<float> output_;
};
TEST_F(F32SimdAVXTest, SetZero) {
xnn_storeu_f32(output_.data(), xnn_zero_f32());
EXPECT_THAT(output_, testing::Each(testing::Eq(0.0f)));
}
TEST_F(F32SimdAVXTest, Add) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_add_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], inputs_[k] + inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(F32SimdAVXTest, Mul) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_mul_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], inputs_[k] * inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(F32SimdAVXTest, Fmadd) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t c =
xnn_loadu_f32(inputs_.data() + 2 * xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_fmadd_f32(a, b, c);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
#if XNN_SIMD_HAS_NATIVE_FMA
// If an arch claims to support FMA, it better also round things correctly.
ASSERT_EQ(output_[k],
static_cast<float>(
static_cast<double>(inputs_[k]) *
static_cast<double>(inputs_[k + xnn_simd_size_f32]) +
static_cast<double>(inputs_[k + 2 * xnn_simd_size_f32])));
#else
ASSERT_EQ(output_[k],
inputs_[k] * inputs_[k + xnn_simd_size_f32] +
inputs_[k + 2 * xnn_simd_size_f32]);
#endif // XNN_SIMD_HAS_NATIVE_FMA
}
}
TEST_F(F32SimdAVXTest, Fmsub) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t c =
xnn_loadu_f32(inputs_.data() + 2 * xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_fmsub_f32(a, b, c);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
#if XNN_SIMD_HAS_NATIVE_FMA
// If an arch claims to support FMA, it better also round things correctly.
ASSERT_EQ(output_[k],
static_cast<float>(
static_cast<double>(inputs_[k]) *
static_cast<double>(inputs_[k + xnn_simd_size_f32]) -
static_cast<double>(inputs_[k + 2 * xnn_simd_size_f32])));
#else
ASSERT_EQ(output_[k],
inputs_[k] * inputs_[k + xnn_simd_size_f32] -
inputs_[k + 2 * xnn_simd_size_f32]);
#endif // XNN_SIMD_HAS_NATIVE_FMA
}
}
TEST_F(F32SimdAVXTest, Fnmadd) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t c =
xnn_loadu_f32(inputs_.data() + 2 * xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_fnmadd_f32(a, b, c);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
#if XNN_SIMD_HAS_NATIVE_FMA
// If an arch claims to support FMA, it better also round things correctly.
ASSERT_EQ(output_[k],
static_cast<float>(
static_cast<double>(-inputs_[k]) *
static_cast<double>(inputs_[k + xnn_simd_size_f32]) +
static_cast<double>(inputs_[k + 2 * xnn_simd_size_f32])));
#else
ASSERT_EQ(output_[k],
-inputs_[k] * inputs_[k + xnn_simd_size_f32] +
inputs_[k + 2 * xnn_simd_size_f32]);
#endif // XNN_SIMD_HAS_NATIVE_FMA
}
}
TEST_F(F32SimdAVXTest, Sub) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_sub_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], inputs_[k] - inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(F32SimdAVXTest, Div) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_div_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_NEAR(output_[k], inputs_[k] / inputs_[k + xnn_simd_size_f32],
2 * std::numeric_limits<float>::epsilon() * std::abs(output_[k]));
}
}
TEST_F(F32SimdAVXTest, Max) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_max_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::max(inputs_[k], inputs_[k + xnn_simd_size_f32]));
}
}
TEST_F(F32SimdAVXTest, Min) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_min_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::min(inputs_[k], inputs_[k + xnn_simd_size_f32]));
}
}
TEST_F(F32SimdAVXTest, Abs) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t res = xnn_abs_f32(a);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::abs(inputs_[k]));
}
}
TEST_F(F32SimdAVXTest, Neg) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t res = xnn_neg_f32(a);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], -inputs_[k]);
}
}
TEST_F(F32SimdAVXTest, And) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_and_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
*(uint32_t *)&inputs_[k] &
*(uint32_t *)&inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(F32SimdAVXTest, Or) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_or_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
*(uint32_t *)&inputs_[k] |
*(uint32_t *)&inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(F32SimdAVXTest, Xor) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_xor_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
*(uint32_t *)&inputs_[k] ^
*(uint32_t *)&inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(F32SimdAVXTest, ShiftLeft) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 1);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 1);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 2);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 2);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 3);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 3);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 4);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 4);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 5);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 5);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 6);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 6);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 7);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 7);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 8);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 8);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 9);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 9);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 10);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 10);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 11);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 11);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 12);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 12);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 13);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 13);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 14);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 14);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 15);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 15);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 16);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 16);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 17);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 17);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 18);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 18);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 19);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 19);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 20);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 20);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 21);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 21);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 22);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 22);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 23);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 23);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 24);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 24);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 25);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 25);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 26);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 26);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 27);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 27);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 28);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 28);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 29);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 29);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 30);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 30);
}
}
{
const xnn_simd_f32_t res = xnn_sll_f32(a, 31);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << 31);
}
}
}
TEST_F(F32SimdAVXTest, ShiftRight) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 1);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 1);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 2);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 2);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 3);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 3);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 4);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 4);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 5);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 5);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 6);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 6);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 7);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 7);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 8);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 8);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 9);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 9);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 10);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 10);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 11);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 11);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 12);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 12);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 13);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 13);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 14);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 14);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 15);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 15);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 16);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 16);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 17);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 17);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 18);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 18);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 19);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 19);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 20);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 20);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 21);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 21);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 22);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 22);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 23);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 23);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 24);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 24);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 25);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 25);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 26);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 26);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 27);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 27);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 28);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 28);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 29);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 29);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 30);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 30);
}
}
{
const xnn_simd_f32_t res = xnn_srl_f32(a, 31);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> 31);
}
}
}
TEST_F(F32SimdAVXTest, ShiftRightSigned) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 1);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 1);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 2);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 2);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 3);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 3);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 4);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 4);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 5);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 5);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 6);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 6);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 7);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 7);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 8);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 8);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 9);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 9);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 10);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 10);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 11);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 11);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 12);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 12);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 13);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 13);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 14);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 14);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 15);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 15);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 16);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 16);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 17);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 17);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 18);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 18);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 19);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 19);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 20);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 20);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 21);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 21);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 22);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 22);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 23);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 23);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 24);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 24);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 25);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 25);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 26);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 26);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 27);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 27);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 28);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 28);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 29);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 29);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 30);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 30);
}
}
{
const xnn_simd_f32_t res = xnn_sra_f32(a, 31);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> 31);
}
}
}
TEST_F(F32SimdAVXTest, CmpEq) {
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
if (rng_() & 1) {
inputs_[k + xnn_simd_size_f32] = inputs_[k];
}
}
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_cmpeq_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
inputs_[k] == inputs_[k + xnn_simd_size_f32] ? 0xFFFFFFFF : 0);
}
}
TEST_F(F32SimdAVXTest, GetExp) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t res = xnn_getexp_f32(a);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::logb(inputs_[k]));
}
}
TEST_F(F32SimdAVXTest, StoreTail) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
for (size_t num_elements = 1; num_elements < xnn_simd_size_f32;
num_elements++) {
xnn_store_tail_f32(output_.data(), a, num_elements);
for (size_t k = 0; k < num_elements; k++) {
ASSERT_EQ(output_[k], inputs_[k]);
}
for (size_t k = num_elements; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], 0.0f);
}
}
}
} // namespace xnnpack
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64