sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/f32-simd.cc.in

321 lines
11 KiB
C++

// Copyright 2024 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$TESTNAME = f"F32Simd{ARCH.upper()}Test"
$if ARCH_MACRO:
// This header needs to go first for the arch test macros.
#include "xnnpack/common.h"
#if ${ARCH_MACRO}
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <random>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "xnnpack/isa-checks.h"
#include "xnnpack/simd/f32-${ARCH}.h"
#include "replicable_random_device.h"
namespace xnnpack {
class ${TESTNAME} : public ::testing::Test {
protected:
void SetUp() override {
$if TEST_REQUIRES:
${TEST_REQUIRES};
inputs_.resize(3 * xnn_simd_size_f32);
output_.resize(xnn_simd_size_f32);
std::uniform_real_distribution<float> f32dist(-10.0f, 10.0f);
std::generate(inputs_.begin(), inputs_.end(),
[&]() { return f32dist(rng_); });
}
xnnpack::ReplicableRandomDevice rng_;
std::vector<float> inputs_;
std::vector<float> output_;
};
TEST_F(${TESTNAME}, SetZero) {
xnn_storeu_f32(output_.data(), xnn_zero_f32());
EXPECT_THAT(output_, testing::Each(testing::Eq(0.0f)));
}
TEST_F(${TESTNAME}, Add) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_add_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], inputs_[k] + inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(${TESTNAME}, Mul) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_mul_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], inputs_[k] * inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(${TESTNAME}, Fmadd) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t c =
xnn_loadu_f32(inputs_.data() + 2 * xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_fmadd_f32(a, b, c);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
#if XNN_SIMD_HAS_NATIVE_FMA
// If an arch claims to support FMA, it better also round things correctly.
ASSERT_EQ(output_[k],
static_cast<float>(
static_cast<double>(inputs_[k]) *
static_cast<double>(inputs_[k + xnn_simd_size_f32]) +
static_cast<double>(inputs_[k + 2 * xnn_simd_size_f32])));
#else
ASSERT_EQ(output_[k],
inputs_[k] * inputs_[k + xnn_simd_size_f32] +
inputs_[k + 2 * xnn_simd_size_f32]);
#endif // XNN_SIMD_HAS_NATIVE_FMA
}
}
TEST_F(${TESTNAME}, Fmsub) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t c =
xnn_loadu_f32(inputs_.data() + 2 * xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_fmsub_f32(a, b, c);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
#if XNN_SIMD_HAS_NATIVE_FMA
// If an arch claims to support FMA, it better also round things correctly.
ASSERT_EQ(output_[k],
static_cast<float>(
static_cast<double>(inputs_[k]) *
static_cast<double>(inputs_[k + xnn_simd_size_f32]) -
static_cast<double>(inputs_[k + 2 * xnn_simd_size_f32])));
#else
ASSERT_EQ(output_[k],
inputs_[k] * inputs_[k + xnn_simd_size_f32] -
inputs_[k + 2 * xnn_simd_size_f32]);
#endif // XNN_SIMD_HAS_NATIVE_FMA
}
}
TEST_F(${TESTNAME}, Fnmadd) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t c =
xnn_loadu_f32(inputs_.data() + 2 * xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_fnmadd_f32(a, b, c);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
#if XNN_SIMD_HAS_NATIVE_FMA
// If an arch claims to support FMA, it better also round things correctly.
ASSERT_EQ(output_[k],
static_cast<float>(
static_cast<double>(-inputs_[k]) *
static_cast<double>(inputs_[k + xnn_simd_size_f32]) +
static_cast<double>(inputs_[k + 2 * xnn_simd_size_f32])));
#else
ASSERT_EQ(output_[k],
-inputs_[k] * inputs_[k + xnn_simd_size_f32] +
inputs_[k + 2 * xnn_simd_size_f32]);
#endif // XNN_SIMD_HAS_NATIVE_FMA
}
}
TEST_F(${TESTNAME}, Sub) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_sub_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], inputs_[k] - inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(${TESTNAME}, Div) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_div_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_NEAR(output_[k], inputs_[k] / inputs_[k + xnn_simd_size_f32],
2 * std::numeric_limits<float>::epsilon() * std::abs(output_[k]));
}
}
TEST_F(${TESTNAME}, Max) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_max_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::max(inputs_[k], inputs_[k + xnn_simd_size_f32]));
}
}
TEST_F(${TESTNAME}, Min) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_min_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::min(inputs_[k], inputs_[k + xnn_simd_size_f32]));
}
}
TEST_F(${TESTNAME}, Abs) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t res = xnn_abs_f32(a);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::abs(inputs_[k]));
}
}
TEST_F(${TESTNAME}, Neg) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t res = xnn_neg_f32(a);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], -inputs_[k]);
}
}
TEST_F(${TESTNAME}, And) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_and_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
*(uint32_t *)&inputs_[k] &
*(uint32_t *)&inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(${TESTNAME}, Or) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_or_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
*(uint32_t *)&inputs_[k] |
*(uint32_t *)&inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(${TESTNAME}, Xor) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_xor_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
*(uint32_t *)&inputs_[k] ^
*(uint32_t *)&inputs_[k + xnn_simd_size_f32]);
}
}
TEST_F(${TESTNAME}, ShiftLeft) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
$for BITS in range(1, 32):
{
const xnn_simd_f32_t res = xnn_sll_f32(a, ${BITS});
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] << ${BITS});
}
}
}
TEST_F(${TESTNAME}, ShiftRight) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
$for BITS in range(1, 32):
{
const xnn_simd_f32_t res = xnn_srl_f32(a, ${BITS});
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k], *(uint32_t *)&inputs_[k] >> ${BITS});
}
}
}
TEST_F(${TESTNAME}, ShiftRightSigned) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
$for BITS in range(1, 32):
{
const xnn_simd_f32_t res = xnn_sra_f32(a, ${BITS});
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(int32_t *)&output_[k], *(int32_t *)&inputs_[k] >> ${BITS});
}
}
}
TEST_F(${TESTNAME}, CmpEq) {
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
if (rng_() & 1) {
inputs_[k + xnn_simd_size_f32] = inputs_[k];
}
}
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t b = xnn_loadu_f32(inputs_.data() + xnn_simd_size_f32);
const xnn_simd_f32_t res = xnn_cmpeq_f32(a, b);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(*(uint32_t *)&output_[k],
inputs_[k] == inputs_[k + xnn_simd_size_f32] ? 0xFFFFFFFF : 0);
}
}
TEST_F(${TESTNAME}, GetExp) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
const xnn_simd_f32_t res = xnn_getexp_f32(a);
xnn_storeu_f32(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], std::logb(inputs_[k]));
}
}
TEST_F(${TESTNAME}, StoreTail) {
const xnn_simd_f32_t a = xnn_loadu_f32(inputs_.data());
for (size_t num_elements = 1; num_elements < xnn_simd_size_f32;
num_elements++) {
xnn_store_tail_f32(output_.data(), a, num_elements);
for (size_t k = 0; k < num_elements; k++) {
ASSERT_EQ(output_[k], inputs_[k]);
}
for (size_t k = num_elements; k < xnn_simd_size_f32; k++) {
ASSERT_EQ(output_[k], 0.0f);
}
}
}
} // namespace xnnpack
$if ARCH_MACRO:
#endif // ${ARCH_MACRO}