sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/reduce-microkernel-tester.h

179 lines
5.4 KiB
C++

// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <random>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/math.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/microparams.h"
#include "xnnpack/buffer.h"
#include "replicable_random_device.h"
class ReduceMicrokernelTester {
public:
enum class OpType {
Max,
Min,
MinMax,
};
ReduceMicrokernelTester& batch_size(size_t batch_size) {
assert(batch_size != 0);
this->batch_size_ = batch_size;
return *this;
}
size_t batch_size() const {
return this->batch_size_;
}
ReduceMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
size_t iterations() const {
return this->iterations_;
}
void Test(xnn_f16_reduce_ukernel_fn reduce, OpType op_type, xnn_init_f16_default_params_fn init_params = nullptr) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
xnnpack::Buffer<xnn_float16> input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
// Compute reference results.
xnnpack::Buffer<xnn_float16>::iterator min, max;
std::tie(min, max) = std::minmax_element(input.begin(), input.begin() + batch_size());
// Prepare parameters.
xnn_f16_default_params params;
if (init_params != nullptr) {
init_params(&params);
}
// Call optimized micro-kernel.
xnn_float16 output[2];
reduce(batch_size() * sizeof(xnn_float16), input.data(), output, init_params != nullptr ? &params : nullptr);
// Verify results.
switch (op_type) {
case OpType::Max:
EXPECT_EQ(output[0], *max)
<< "with batch " << batch_size();
break;
case OpType::Min:
EXPECT_EQ(output[0], *min)
<< "with batch " << batch_size();
break;
case OpType::MinMax:
EXPECT_EQ(output[0], *min)
<< "with batch " << batch_size();
EXPECT_EQ(output[1], *max)
<< "with batch " << batch_size();
break;
}
}
}
void Test(xnn_f32_reduce_ukernel_fn reduce, OpType op_type, xnn_init_f32_default_params_fn init_params = nullptr) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
xnnpack::Buffer<float> input(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
// Compute reference results.
xnnpack::Buffer<float>::iterator min, max;
std::tie(min, max) = std::minmax_element(input.begin(), input.begin() + batch_size());
// Prepare parameters.
xnn_f32_default_params params;
if (init_params != nullptr) {
init_params(&params);
}
// Call optimized micro-kernel.
float output[2];
reduce(batch_size() * sizeof(float), input.data(), output, init_params != nullptr ? &params : nullptr);
// Verify results.
switch (op_type) {
case OpType::Max:
EXPECT_EQ(output[0], *max)
<< "with batch " << batch_size();
break;
case OpType::Min:
EXPECT_EQ(output[0], *min)
<< "with batch " << batch_size();
break;
case OpType::MinMax:
EXPECT_EQ(output[0], *min)
<< "with batch " << batch_size();
EXPECT_EQ(output[1], *max)
<< "with batch " << batch_size();
break;
}
}
}
void Test(xnn_u8_reduce_ukernel_fn reduce, OpType op_type) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
xnnpack::Buffer<uint8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
// Compute reference results.
xnnpack::Buffer<uint8_t>::iterator min, max;
std::tie(min, max) = std::minmax_element(input.begin(), input.begin() + batch_size());
// Call optimized micro-kernel.
uint8_t output[2] = {0xAA, 0xAA};
reduce(batch_size() * sizeof(uint8_t), input.data(), output, nullptr);
// Verify results.
switch (op_type) {
case OpType::Max:
EXPECT_EQ(output[0], *max)
<< "with batch " << batch_size();
break;
case OpType::Min:
EXPECT_EQ(output[0], *min)
<< "with batch " << batch_size();
break;
case OpType::MinMax:
EXPECT_EQ(output[0], *min)
<< "with batch " << batch_size();
EXPECT_EQ(output[1], *max)
<< "with batch " << batch_size();
break;
}
}
}
private:
size_t batch_size_{1};
size_t iterations_{15};
};