179 lines
5.4 KiB
C++
179 lines
5.4 KiB
C++
// Copyright 2023 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "xnnpack.h"
|
|
#include "xnnpack/math.h"
|
|
#include "xnnpack/microfnptr.h"
|
|
#include "xnnpack/microparams.h"
|
|
#include "xnnpack/buffer.h"
|
|
#include "replicable_random_device.h"
|
|
|
|
class ReduceMicrokernelTester {
|
|
public:
|
|
enum class OpType {
|
|
Max,
|
|
Min,
|
|
MinMax,
|
|
};
|
|
|
|
ReduceMicrokernelTester& batch_size(size_t batch_size) {
|
|
assert(batch_size != 0);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
ReduceMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void Test(xnn_f16_reduce_ukernel_fn reduce, OpType op_type, xnn_init_f16_default_params_fn init_params = nullptr) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
|
|
|
|
xnnpack::Buffer<xnn_float16> input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
// Compute reference results.
|
|
xnnpack::Buffer<xnn_float16>::iterator min, max;
|
|
std::tie(min, max) = std::minmax_element(input.begin(), input.begin() + batch_size());
|
|
|
|
// Prepare parameters.
|
|
xnn_f16_default_params params;
|
|
if (init_params != nullptr) {
|
|
init_params(¶ms);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
xnn_float16 output[2];
|
|
reduce(batch_size() * sizeof(xnn_float16), input.data(), output, init_params != nullptr ? ¶ms : nullptr);
|
|
|
|
// Verify results.
|
|
switch (op_type) {
|
|
case OpType::Max:
|
|
EXPECT_EQ(output[0], *max)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
case OpType::Min:
|
|
EXPECT_EQ(output[0], *min)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
case OpType::MinMax:
|
|
EXPECT_EQ(output[0], *min)
|
|
<< "with batch " << batch_size();
|
|
EXPECT_EQ(output[1], *max)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_reduce_ukernel_fn reduce, OpType op_type, xnn_init_f32_default_params_fn init_params = nullptr) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
|
|
|
|
xnnpack::Buffer<float> input(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
// Compute reference results.
|
|
xnnpack::Buffer<float>::iterator min, max;
|
|
std::tie(min, max) = std::minmax_element(input.begin(), input.begin() + batch_size());
|
|
|
|
// Prepare parameters.
|
|
xnn_f32_default_params params;
|
|
if (init_params != nullptr) {
|
|
init_params(¶ms);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
float output[2];
|
|
reduce(batch_size() * sizeof(float), input.data(), output, init_params != nullptr ? ¶ms : nullptr);
|
|
|
|
// Verify results.
|
|
switch (op_type) {
|
|
case OpType::Max:
|
|
EXPECT_EQ(output[0], *max)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
case OpType::Min:
|
|
EXPECT_EQ(output[0], *min)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
case OpType::MinMax:
|
|
EXPECT_EQ(output[0], *min)
|
|
<< "with batch " << batch_size();
|
|
EXPECT_EQ(output[1], *max)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Test(xnn_u8_reduce_ukernel_fn reduce, OpType op_type) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_int_distribution<int32_t> u8dist(
|
|
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
|
|
|
|
xnnpack::Buffer<uint8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
|
|
|
|
// Compute reference results.
|
|
xnnpack::Buffer<uint8_t>::iterator min, max;
|
|
std::tie(min, max) = std::minmax_element(input.begin(), input.begin() + batch_size());
|
|
|
|
// Call optimized micro-kernel.
|
|
uint8_t output[2] = {0xAA, 0xAA};
|
|
reduce(batch_size() * sizeof(uint8_t), input.data(), output, nullptr);
|
|
|
|
// Verify results.
|
|
switch (op_type) {
|
|
case OpType::Max:
|
|
EXPECT_EQ(output[0], *max)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
case OpType::Min:
|
|
EXPECT_EQ(output[0], *min)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
case OpType::MinMax:
|
|
EXPECT_EQ(output[0], *min)
|
|
<< "with batch " << batch_size();
|
|
EXPECT_EQ(output[1], *max)
|
|
<< "with batch " << batch_size();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_size_{1};
|
|
size_t iterations_{15};
|
|
};
|