268 lines
7.8 KiB
C++
268 lines
7.8 KiB
C++
// Copyright 2023 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "xnnpack.h"
|
|
#include "xnnpack/buffer.h"
|
|
#include "xnnpack/math.h"
|
|
#include "xnnpack/microfnptr.h"
|
|
#include "xnnpack/microparams.h"
|
|
#include "xnnpack/requantization.h"
|
|
#include "replicable_random_device.h"
|
|
|
|
class RSumMicrokernelTester {
|
|
public:
|
|
RSumMicrokernelTester& batch_size(size_t batch_size) {
|
|
assert(batch_size != 0);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
RSumMicrokernelTester& scale(float scale) {
|
|
this->scale_ = scale;
|
|
return *this;
|
|
}
|
|
|
|
float scale() const {
|
|
return this->scale_;
|
|
}
|
|
|
|
RSumMicrokernelTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
RSumMicrokernelTester& input_scale(float input_scale) {
|
|
assert(input_scale > 0.0f);
|
|
assert(std::isnormal(input_scale));
|
|
this->input_scale_ = input_scale;
|
|
return *this;
|
|
}
|
|
|
|
float input_scale() const {
|
|
return this->input_scale_;
|
|
}
|
|
|
|
RSumMicrokernelTester& output_scale(float output_scale) {
|
|
assert(output_scale > 0.0f);
|
|
assert(std::isnormal(output_scale));
|
|
this->output_scale_ = output_scale;
|
|
return *this;
|
|
}
|
|
|
|
float output_scale() const {
|
|
return this->output_scale_;
|
|
}
|
|
|
|
RSumMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
|
|
this->input_zero_point_ = input_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
uint8_t input_zero_point() const {
|
|
return this->input_zero_point_;
|
|
}
|
|
|
|
RSumMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
|
|
this->output_zero_point_ = output_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
uint8_t output_zero_point() const {
|
|
return this->output_zero_point_;
|
|
}
|
|
|
|
uint8_t qmin() const {
|
|
return this->qmin_;
|
|
}
|
|
|
|
uint8_t qmax() const {
|
|
return this->qmax_;
|
|
}
|
|
|
|
void Test(xnn_qs8_rsum_ukernel_fn rsum,
|
|
xnn_init_qs8_rsum_params_fn init_params = nullptr) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_int_distribution<int32_t> i8dist(
|
|
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
|
|
|
|
xnnpack::Buffer<int8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
|
|
|
|
// Compute reference results.
|
|
int32_t output_init = i8dist(rng);
|
|
int32_t output_ref = output_init;
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
output_ref += int32_t(input[i]);
|
|
}
|
|
|
|
// Prepare parameters
|
|
struct xnn_qs8_rsum_params params;
|
|
if (init_params) {
|
|
init_params(¶ms);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
int32_t output = output_init;
|
|
rsum(batch_size() * sizeof(int8_t), input.data(), &output, ¶ms);
|
|
|
|
// Verify results.
|
|
EXPECT_EQ(output_ref, output);
|
|
}
|
|
}
|
|
|
|
void Test(xnn_qu8_rsum_ukernel_fn rsum,
|
|
xnn_init_qs8_rsum_params_fn init_params = nullptr) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_int_distribution<uint32_t> u8dist(
|
|
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
|
|
|
|
xnnpack::Buffer<uint8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
|
|
|
|
// Compute reference results.
|
|
// The accumulator is not initialized to zero to verify that the
|
|
// microkernel doesn't overwrite the output.
|
|
uint32_t output_init = u8dist(rng);
|
|
uint32_t output_ref = output_init;
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
output_ref += uint32_t(input[i]);
|
|
}
|
|
|
|
// Prepare parameters
|
|
struct xnn_qs8_rsum_params params;
|
|
if (init_params) {
|
|
init_params(¶ms);
|
|
}
|
|
|
|
// Call optimized micro-kernel.
|
|
uint32_t output = output_init;
|
|
rsum(batch_size() * sizeof(uint8_t), input.data(), &output, ¶ms);
|
|
|
|
// Verify results.
|
|
EXPECT_EQ(output_ref, output);
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f16_rsum_ukernel_fn rsum, xnn_init_f16_scale_params_fn init_params) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_real_distribution<float> f32dist(0.01f, 1.0f);
|
|
|
|
xnnpack::Buffer<xnn_float16> input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
// Compute reference results.
|
|
float output_ref = 0.0f;
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
output_ref += input[i];
|
|
}
|
|
output_ref *= scale();
|
|
|
|
// Prepare parameters.
|
|
xnn_f16_scale_params params;
|
|
init_params(¶ms, static_cast<xnn_float16>(scale()));
|
|
|
|
// Call optimized micro-kernel.
|
|
xnn_float16 output;
|
|
rsum(batch_size() * sizeof(xnn_float16), input.data(), &output, ¶ms);
|
|
|
|
// Verify results.
|
|
EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 4.0e-3f)
|
|
<< "with batch " << batch_size() << ", scale " << scale();
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f16_f32acc_rsum_ukernel_fn rsum, xnn_init_f16_f32acc_scale_params_fn init_params) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_real_distribution<float> f32dist(0.01f, 1.0f);
|
|
|
|
xnnpack::Buffer<xnn_float16> input(batch_size() + XNN_EXTRA_BYTES / sizeof(xnn_float16));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
// Compute reference results.
|
|
float output_ref = 0.0f;
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
output_ref += input[i];
|
|
}
|
|
output_ref *= scale();
|
|
|
|
// Prepare parameters.
|
|
xnn_f16_f32acc_scale_params params;
|
|
init_params(¶ms, scale());
|
|
|
|
// Call optimized micro-kernel.
|
|
float output = 0.f;
|
|
rsum(batch_size() * sizeof(xnn_float16), input.data(), &output, ¶ms);
|
|
|
|
// Verify results.
|
|
EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 1.0e-5f)
|
|
<< "with batch " << batch_size() << ", scale " << scale();
|
|
}
|
|
}
|
|
|
|
void Test(xnn_f32_rsum_ukernel_fn rsum, xnn_init_f32_scale_params_fn init_params) const {
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_real_distribution<float> f32dist(0.01f, 1.0f);
|
|
|
|
xnnpack::Buffer<float> input(batch_size() + XNN_EXTRA_BYTES / sizeof(float));
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
|
|
|
|
// Compute reference results.
|
|
const double output_ref =
|
|
std::accumulate(input.begin(), input.begin() + batch_size(), 0.0) *
|
|
static_cast<double>(scale());
|
|
|
|
// Prepare parameters.
|
|
xnn_f32_scale_params params;
|
|
init_params(¶ms, scale());
|
|
|
|
// Call optimized micro-kernel.
|
|
float output = 0.f;
|
|
rsum(batch_size() * sizeof(float), input.data(), &output, ¶ms);
|
|
|
|
// Verify results.
|
|
EXPECT_NEAR(output, output_ref, std::abs(output_ref) * 1.0e-6f)
|
|
<< "with batch " << batch_size() << ", scale " << scale();
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t batch_size_{1};
|
|
float scale_{1.0f};
|
|
size_t iterations_{15};
|
|
float input_scale_{1.25f};
|
|
float output_scale_{0.75f};
|
|
uint8_t input_zero_point_{121};
|
|
uint8_t output_zero_point_{133};
|
|
uint8_t qmin_{0};
|
|
uint8_t qmax_{255};
|
|
};
|