sglang_v0.5.2/pytorch_2.8.0/third_party/fbgemm/bench/SparseDenseMMInt8Benchmark.cc

186 lines
5.7 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "bench/BenchUtils.h"
#include "fbgemm/FbgemmSparse.h"
#include "fbgemm/Utils.h"
#include "fbgemm/spmmUtils.h"
#include "src/RefImplementations.h"
#include <iomanip>
#include <iostream>
using namespace std;
using namespace fbgemm;
int main(int, char**) {
vector<vector<int>> shapes = getSparseMatrixShapes();
// C is MxN -> CT is NxM
// A is MxK -> AT is KxM
// B is KxN -> BT is NxK
cout << setw(7) << "index" << setw(7) << "m" << setw(7) << "n" << setw(7)
<< "k" << setw(7) << "fnz" << setw(15) << "eff_GFLOPS" << setw(15)
<< "real_GFLOPS" << endl;
int index = 0;
for (auto const& s : shapes) {
int m = s[0];
int n = s[1];
int k = s[2];
for (float fnz = 0.20; fnz >= 0.20; fnz -= 0.01) {
auto aData = getRandomBlockSparseMatrix<uint8_t>(
m, k, 1.0, 1 /* rowBlockSize */, 1 /* colBlockSize */);
auto bData = getRandomBlockSparseMatrix<int8_t>(k, n, fnz);
auto cData = getRandomBlockSparseMatrix<int32_t>(
m, n, 1.0, 1 /* rowBlockSize */, 1 /* colBlockSize */);
aligned_vector<uint8_t> atData(k * m);
aligned_vector<int8_t> btData(n * k);
aligned_vector<int32_t> ctData(n * m);
aligned_vector<int32_t> ctDataRef(n * m);
aligned_vector<uint8_t> ctDataRef_u8(n * m);
aligned_vector<int32_t> ctDataIntrin_i32(n * m);
aligned_vector<uint8_t> ctDataIntrin_u8(n * m);
transpose_matrix(m, k, aData.data(), k, atData.data(), m);
transpose_matrix(k, n, bData.data(), n, btData.data(), k);
unique_ptr<BCSRMatrix<>> bcsr = fbgemmDenseToBCSR(n, k, btData.data());
// output scale and zero point
float scale = 32.0f;
int32_t zero_point = 2;
int32_t act_zero_point = 2;
// symmetric quant for weights
aligned_vector<int32_t> weight_zero_point(n);
randFill<int32_t>(weight_zero_point, 0, 0);
// Each row of weight matrix has it's own scale
// The following is a multiplication activation scale with
// weight scales.
aligned_vector<float> act_times_w_scale(n);
randFill<float>(act_times_w_scale, -8.0f, 8.0f);
trRequantizationParams_t reqParams = {
act_zero_point,
weight_zero_point.data(),
zero_point,
scale,
bcsr->row_offsets.data(),
nullptr,
nullptr,
act_times_w_scale.data()};
// printMatrix(matrix_op_t::NoTranspose, btData.data(), n, k, k,
// "btData"); printMatrix( matrix_op_t::NoTranspose, bcsr->rowBPtr.data(),
// 1,
// bcsr->rowBPtr.size(),
// bcsr->rowBPtr.size(),
// "rowBPtr");
// printMatrix(
// matrix_op_t::NoTranspose,
// bcsr->colBIdx.data(),
// 1,
// bcsr->colBIdx.size(),
// bcsr->colBIdx.size(),
// "colBIdx");
// printMatrix(
// matrix_op_t::NoTranspose,
// bcsr->values.data(),
// 1,
// bcsr->values.size(),
// bcsr->values.size(),
// "values");
// We calculate C^T = B^T x A^T
int ldat = m;
int ldct = m;
double effective_flop = m * n * k * 2;
constexpr int NWARMUP = 20;
constexpr int NITER = 100;
auto secs_intrin = measureWithWarmup(
[&]() {
fbgemmSparseDenseInt8MM<false, QuantizationGranularity::TENSOR>(
m,
bcsr,
atData.data(),
ldat,
ctDataIntrin_i32.data(),
ctDataIntrin_u8.data(),
ldct,
reqParams);
},
NWARMUP,
NITER,
[&]() {
cache_evict(atData);
cache_evict(bcsr->rowBPtr);
cache_evict(bcsr->colBIdx);
cache_evict(bcsr->values);
cache_evict(ctDataIntrin_i32);
cache_evict(ctDataIntrin_u8);
});
// printMatrix(matrix_op_t::NoTranspose, btData.data(), n, k, k,
// "btData");
// printMatrix(matrix_op_t::NoTranspose, atData.data(), k, m, m,
// "atData");
// printMatrix(matrix_op_t::NoTranspose, ctData.data(), n, m, m,
// "ctData");
matmul_u8i8acc32_ref(
m,
n,
k,
k, // lda
n, // ldb
n, // ldc
aData.data(),
bData.data(),
cData.data());
transpose_matrix(m, n, cData.data(), n, ctDataRef.data(), m);
// ctDataRef is nxm
block_type_t block{0, n, 0, m};
trRequantizeRef<false, QuantizationGranularity::TENSOR>(
ctDataRef_u8.data(), ctDataRef.data(), block, m, m, reqParams);
// printMatrix(matrix_op_t::NoTranspose, ctDataRef_u8.data(), n, m, m,
// "ctDataRef_u8");
// printMatrix(matrix_op_t::NoTranspose, ctDataIntrin_u8.data(), n, m, m,
// "ctDataIntrin_u8");
//
// Compare results
for (size_t i = 0; i < ctDataRef.size(); i++) {
if (std::abs(ctDataRef_u8[i] - ctDataIntrin_u8[i]) > 0) {
fprintf(
stderr,
"Error: Results differ ref %d and test %d at %ld\n",
ctDataRef_u8[i],
ctDataIntrin_u8[i],
i);
return 1;
}
}
double effective_gflops_intrin = effective_flop / secs_intrin / 1e9;
cout << "[" << setw(5) << index << "]" << setw(7) << m << setw(7) << n
<< setw(7) << k << fixed << setw(7) << setprecision(2) << fnz
<< setw(15) << setprecision(5) << effective_gflops_intrin << setw(15)
<< setprecision(5) << fnz * effective_gflops_intrin << endl;
++index;
}
}
}