sglang_v0.5.2/pytorch_2.8.0/third_party/fbgemm/test/SparseDenseMMInt8Test.cc

188 lines
5.5 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <gtest/gtest.h>
#include <iostream>
#include "bench/BenchUtils.h"
#include "fbgemm/FbgemmSparse.h"
#include "fbgemm/Utils.h"
#include "fbgemm/spmmUtils.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
vector<QuantizationGranularity> qGranularityVals{
QuantizationGranularity::TENSOR,
QuantizationGranularity::OUT_CHANNEL};
// tuple represents M, N, K, fnz, fuse_relu and QuantizationGranularity
class SPMMInt8Test
: public testing::TestWithParam<
tuple<int, int, int, float, bool, QuantizationGranularity>> {};
INSTANTIATE_TEST_CASE_P(
InstantiationName,
SPMMInt8Test,
::testing::Combine(
::testing::ValuesIn({1, 2, 3, 4, 7, 13, 16, 20, 32}), // M
::testing::ValuesIn({1, 2, 3, 4, 7, 13, 16, 20, 32}), // N
::testing::ValuesIn(
{1, 2, 3, 4, 7, 8, 14, 24, 4000, 4001, 4096, 5000}), // K
::testing::ValuesIn({0.1f, 0.2f, 0.3f}), // fnz
::testing::Bool(), // fuse relu
::testing::ValuesIn(qGranularityVals))); // QuantizationGranularity
/**
* Test for sparse-dense matrix-matrix multiplication (int8)
*/
TEST_P(SPMMInt8Test, spInt8) {
int M, N, K;
float fnz;
bool fuse_relu;
QuantizationGranularity qGran;
tie(M, N, K, fnz, fuse_relu, qGran) = GetParam();
auto aData = getRandomBlockSparseMatrix<uint8_t>(
M, K, 1.0, 1 /* rowBlockSize */, 1 /* colBlockSize */);
auto bData = getRandomBlockSparseMatrix<int8_t>(K, N, fnz);
auto cData = getRandomBlockSparseMatrix<int32_t>(
M, N, 1.0, 1 /* rowBlockSize */, 1 /* colBlockSize */);
aligned_vector<uint8_t> atData(K * M);
aligned_vector<int8_t> btData(N * K);
aligned_vector<int32_t> ctDataRef(N * M, 5);
aligned_vector<uint8_t> ctDataRef_u8(N * M, 7);
aligned_vector<int32_t> ctDataIntrin_i32(N * M, 9);
aligned_vector<uint8_t> ctDataIntrin_u8(N * M, 11);
transpose_matrix(M, K, aData.data(), K, atData.data(), M);
transpose_matrix(K, N, bData.data(), N, btData.data(), K);
unique_ptr<BCSRMatrix<>> bcsr = fbgemmDenseToBCSR(N, K, btData.data());
// output scale and zero point
float scale = 128.0f;
int32_t zero_point = 2;
int32_t act_zero_point = 2;
// symmetric quant for weights
aligned_vector<int32_t> weight_zero_point(N);
randFill<int32_t>(weight_zero_point, 0, 0);
// Each row of weight matrix has it's own scale
// The following is a multiplication activation scale with
// weight scales.
aligned_vector<float> act_times_w_scale(N);
randFill<float>(act_times_w_scale, -8.0f, 8.0f);
trRequantizationParams_t reqParams = {
act_zero_point,
weight_zero_point.data(),
zero_point,
scale,
bcsr->row_offsets.data(),
nullptr,
nullptr,
act_times_w_scale.data()};
int ldat = M;
int ldct = M;
if (fuse_relu) {
if (qGran == QuantizationGranularity::TENSOR) {
fbgemmSparseDenseInt8MM<true, QuantizationGranularity::TENSOR>(
M,
bcsr,
atData.data(),
ldat,
ctDataIntrin_i32.data(),
ctDataIntrin_u8.data(),
ldct,
reqParams);
} else {
fbgemmSparseDenseInt8MM<true, QuantizationGranularity::OUT_CHANNEL>(
M,
bcsr,
atData.data(),
ldat,
ctDataIntrin_i32.data(),
ctDataIntrin_u8.data(),
ldct,
reqParams);
}
} else {
if (qGran == QuantizationGranularity::TENSOR) {
fbgemmSparseDenseInt8MM<false, QuantizationGranularity::TENSOR>(
M,
bcsr,
atData.data(),
ldat,
ctDataIntrin_i32.data(),
ctDataIntrin_u8.data(),
ldct,
reqParams);
} else {
fbgemmSparseDenseInt8MM<false, QuantizationGranularity::OUT_CHANNEL>(
M,
bcsr,
atData.data(),
ldat,
ctDataIntrin_i32.data(),
ctDataIntrin_u8.data(),
ldct,
reqParams);
}
}
matmul_u8i8acc32_ref(
M,
N,
K,
K, // lda
N, // ldb
N, // ldc
aData.data(),
bData.data(),
cData.data());
transpose_matrix(M, N, cData.data(), N, ctDataRef.data(), M);
// ctDataRef is nxm
block_type_t block{0, N, 0, M};
if (fuse_relu) {
if (qGran == QuantizationGranularity::TENSOR) {
trRequantizeRef<true, QuantizationGranularity::TENSOR>(
ctDataRef_u8.data(), ctDataRef.data(), block, M, M, reqParams);
} else {
trRequantizeRef<true, QuantizationGranularity::OUT_CHANNEL>(
ctDataRef_u8.data(), ctDataRef.data(), block, M, M, reqParams);
}
} else {
if (qGran == QuantizationGranularity::TENSOR) {
trRequantizeRef<false, QuantizationGranularity::TENSOR>(
ctDataRef_u8.data(), ctDataRef.data(), block, M, M, reqParams);
} else {
trRequantizeRef<false, QuantizationGranularity::OUT_CHANNEL>(
ctDataRef_u8.data(), ctDataRef.data(), block, M, M, reqParams);
}
}
// printMatrix(matrix_op_t::NoTranspose, ctDataRef_u8.data(), n, m, m,
// "ctDataRef_u8");
// printMatrix(matrix_op_t::NoTranspose, ctDataIntrin_u8.data(), n, m, m,
// "ctDataIntrin_u8");
//
// Compare results
for (size_t i = 0; i < ctDataRef.size(); i++) {
EXPECT_EQ(ctDataRef_u8[i], ctDataIntrin_u8[i])
<< "Results differ ref " << ctDataRef_u8[i] << " and test "
<< ctDataIntrin_u8[i] << " at " << i;
}
}