110 lines
3.2 KiB
Python
110 lines
3.2 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
from sglang.lang.api import set_default_backend
|
|
from sglang.test.test_utils import (
|
|
add_common_sglang_args_and_parse,
|
|
select_sglang_backend,
|
|
)
|
|
from sglang.utils import download_and_cache_file, read_jsonl
|
|
|
|
|
|
def get_one_example(lines, i, include_answer):
|
|
ret = lines[i]["activity_label"] + ": " + lines[i]["ctx"] + " "
|
|
if include_answer:
|
|
ret += lines[i]["endings"][lines[i]["label"]]
|
|
return ret
|
|
|
|
|
|
def get_few_shot_examples(lines, k):
|
|
ret = ""
|
|
for i in range(k):
|
|
ret += get_one_example(lines, i, True) + "\n\n"
|
|
return ret
|
|
|
|
|
|
def main(args):
|
|
# Select backend
|
|
set_default_backend(select_sglang_backend(args))
|
|
|
|
# Read data
|
|
data_path = args.data_path
|
|
url = "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_val.jsonl"
|
|
if not os.path.isfile(data_path):
|
|
data_path = download_and_cache_file(url)
|
|
lines = list(read_jsonl(data_path))
|
|
|
|
# Construct prompts
|
|
num_questions = args.num_questions
|
|
num_shots = args.num_shots
|
|
few_shot_examples = get_few_shot_examples(lines, num_shots)
|
|
|
|
questions = []
|
|
choices = []
|
|
labels = []
|
|
for i in range(len(lines[:num_questions])):
|
|
questions.append(get_one_example(lines, i, False))
|
|
choices.append(lines[i]["endings"])
|
|
labels.append(lines[i]["label"])
|
|
arguments = [{"question": q, "choices": c} for q, c in zip(questions, choices)]
|
|
|
|
#####################################
|
|
######### SGL Program Begin #########
|
|
#####################################
|
|
|
|
import sglang as sgl
|
|
|
|
@sgl.function
|
|
def few_shot_hellaswag(s, question, choices):
|
|
s += few_shot_examples + question
|
|
s += sgl.select("answer", choices=choices)
|
|
|
|
#####################################
|
|
########## SGL Program End ##########
|
|
#####################################
|
|
|
|
# Run requests
|
|
tic = time.perf_counter()
|
|
rets = few_shot_hellaswag.run_batch(
|
|
arguments,
|
|
temperature=0,
|
|
num_threads=args.parallel,
|
|
progress_bar=True,
|
|
)
|
|
preds = [choices[i].index(rets[i]["answer"]) for i in range(len(rets))]
|
|
latency = time.perf_counter() - tic
|
|
|
|
# Compute accuracy
|
|
acc = np.mean(np.array(preds) == np.array(labels))
|
|
print(f"Latency: {latency:.3f}")
|
|
print(f"Accuracy: {acc:.3f}")
|
|
|
|
# Write results
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "hellaswag",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(latency, 3),
|
|
"accuracy": round(acc, 3),
|
|
"num_requests": args.num_questions,
|
|
"other": {
|
|
"num_questions": args.num_questions,
|
|
"parallel": args.parallel,
|
|
},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--num-shots", type=int, default=20)
|
|
parser.add_argument("--data-path", type=str, default="hellaswag_val.jsonl")
|
|
parser.add_argument("--num-questions", type=int, default=200)
|
|
args = add_common_sglang_args_and_parse(parser)
|
|
main(args)
|