187 lines
5.9 KiB
Python
187 lines
5.9 KiB
Python
import argparse
|
|
import ast
|
|
import asyncio
|
|
import json
|
|
import re
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
|
|
from sglang.utils import dump_state_text, read_jsonl
|
|
|
|
INVALID = -9999999
|
|
|
|
|
|
def get_answer_value(answer_str):
|
|
answer_str = answer_str.replace(",", "")
|
|
numbers = re.findall(r"\d+", answer_str)
|
|
if len(numbers) < 1:
|
|
return INVALID
|
|
try:
|
|
return ast.literal_eval(numbers[-1])
|
|
except SyntaxError:
|
|
return INVALID
|
|
|
|
|
|
prompt_lib = [
|
|
"Let us think step by step.",
|
|
"Approach this methodically. Let's dissect the problem into smaller, more manageable parts.",
|
|
"It's important to proceed step by step, ensuring accuracy at each stage.",
|
|
"Take a deep breath and break this down.",
|
|
"A little bit of arithmetic and a logical approach will help us quickly arrive at the solution to this problem.",
|
|
"I am extremely good at math.",
|
|
]
|
|
|
|
|
|
def multi_chain_gsm8k(question, num_chains, call_generate):
|
|
s = "Question: " + question + "\n"
|
|
# s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256,
|
|
# stop="Question", temperature=0)
|
|
# return s
|
|
|
|
comps = []
|
|
for i in range(num_chains):
|
|
comps.append(
|
|
call_generate(
|
|
s + "Answer: " + prompt_lib[i % num_chains],
|
|
max_tokens=256,
|
|
temperature=0.3,
|
|
stop="Question",
|
|
)
|
|
)
|
|
|
|
s += "Answer: To answer this question, here are some possible solutions. "
|
|
s += "After considering all of them, I will do a majority vote.\n\n"
|
|
for i in range(num_chains):
|
|
s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
|
|
s += "\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
|
|
s += call_generate(s, max_tokens=16, temperature=0, stop=None)
|
|
return s
|
|
|
|
|
|
async def multi_chain_gsm8k_async(question, num_chains, call_generate):
|
|
s = "Question: " + question + "\n"
|
|
# s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256,
|
|
# stop="Question", temperature=0)
|
|
# return s
|
|
|
|
comps = []
|
|
for i in range(num_chains):
|
|
comps.append(
|
|
await call_generate(
|
|
s + "Answer: " + prompt_lib[i % num_chains],
|
|
max_tokens=256,
|
|
temperature=0.3,
|
|
stop="Question",
|
|
)
|
|
)
|
|
|
|
s += "Answer: To answer this question, here are some possible solutions. "
|
|
s += "After considering all of them, I will do a majority vote.\n\n"
|
|
for i in range(num_chains):
|
|
s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
|
|
s += "\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
|
|
s += await call_generate(s, max_tokens=16, temperature=0, stop=None)
|
|
return s
|
|
|
|
|
|
def main(args):
|
|
lines = read_jsonl(args.data_path)
|
|
|
|
# Construct prompts
|
|
k = args.num_shot
|
|
|
|
questions = []
|
|
labels = []
|
|
for i in range(len(lines[: args.num_questions])):
|
|
questions.append(lines[i]["question"])
|
|
labels.append(get_answer_value(lines[i]["answer"]))
|
|
assert all(l != INVALID for l in labels)
|
|
|
|
states = [None] * len(labels)
|
|
|
|
# Select backend
|
|
call_generate = get_call_generate(args)
|
|
|
|
# Run requests
|
|
if args.backend != "lmql":
|
|
# Use thread pool
|
|
def get_one_answer(i):
|
|
answer = multi_chain_gsm8k(questions[i], args.num_chains, call_generate)
|
|
states[i] = answer
|
|
|
|
tic = time.perf_counter()
|
|
if args.parallel == 1:
|
|
for i in tqdm(range(len(questions))):
|
|
get_one_answer(i)
|
|
else:
|
|
with ThreadPoolExecutor(args.parallel) as executor:
|
|
list(
|
|
tqdm(
|
|
executor.map(get_one_answer, list(range(len(questions)))),
|
|
total=len(questions),
|
|
)
|
|
)
|
|
|
|
else:
|
|
# Use asyncio
|
|
async def get_one_answer_asyncio(i):
|
|
answer = await multi_chain_gsm8k_async(
|
|
questions[i], args.num_chains, call_generate
|
|
)
|
|
states[i] = answer
|
|
|
|
tic = time.perf_counter()
|
|
loop = asyncio.get_event_loop()
|
|
batches = [
|
|
list(range(i, min(i + args.parallel, len(questions))))
|
|
for i in range(0, len(questions), args.parallel)
|
|
]
|
|
for bt in tqdm(batches):
|
|
tasks = [get_one_answer_asyncio(k) for k in bt]
|
|
loop.run_until_complete(asyncio.gather(*tasks))
|
|
|
|
latency = time.perf_counter() - tic
|
|
|
|
preds = []
|
|
for i in range(len(states)):
|
|
preds.append(get_answer_value(states[i]))
|
|
|
|
# Compute accuracy
|
|
acc = np.mean(np.array(preds) == np.array(labels))
|
|
invalid = np.mean(np.array(preds) == INVALID)
|
|
print(f"Latency: {latency:.3f}")
|
|
print(f"Invalid: {invalid:.3f}")
|
|
print(f"Accuracy: {acc:.3f}")
|
|
|
|
# Write results
|
|
dump_state_text(f"tmp_output_{args.backend}.txt", states)
|
|
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "multi_chain_gsm8k",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(latency, 3),
|
|
"accuracy": round(acc, 3),
|
|
"num_requests": args.num_questions,
|
|
"other": {
|
|
"num_questions": args.num_questions,
|
|
"parallel": args.parallel,
|
|
},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--num-shot", type=int, default=0)
|
|
parser.add_argument("--num-chains", type=int, default=5)
|
|
parser.add_argument("--data-path", type=str, default="test.jsonl")
|
|
parser.add_argument("--num-questions", type=int, default=50)
|
|
args = add_common_other_args_and_parse(parser)
|
|
main(args)
|