sglang_v0.5.2/sglang/benchmark/tree_of_thought_deep/bench_sglang.py

172 lines
5.1 KiB
Python

import argparse
import ast
import json
import re
import time
from collections import Counter
import numpy as np
import sglang as sgl
from sglang.test.test_utils import (
add_common_sglang_args_and_parse,
select_sglang_backend,
)
from sglang.utils import dump_state_text, read_jsonl
INVALID = -9999999
def get_answer_value(answer_str):
answer_str = answer_str.replace(",", "")
numbers = re.findall(r"\d+", answer_str)
if len(numbers) < 1:
return INVALID
try:
return ast.literal_eval(numbers[-1])
except SyntaxError:
return INVALID
def most_frequent_number(numbers):
if not numbers:
return None
frequency = Counter(numbers)
most_frequent = max(frequency, key=frequency.get)
return most_frequent
# Use a low temp to make the results more deterministic and the comparison more fair.
temp = 0.001
def propose_plan(s, question, num_branches):
s += sgl.user(
"""Please generate a high-level plan for solving the following question. As the first step, just say what method and idea you will use to solve the question. You can reorganize the information in the question. Do not do the actual calculation. Keep your response concise and within 80 words. Question: """
+ question
)
forks = s.fork(num_branches)
forks += sgl.assistant(sgl.gen("plan", max_tokens=256, temperature=temp))
return forks
def execute_plan(s, num_branches):
s += sgl.user(
"""The plan looks good! Now, use real numbers and do the calculation. Please solve the question step-by-step according to the high-level plan. Give me the final answer. Make your response short."""
)
forks = s.fork(num_branches)
forks += sgl.assistant(sgl.gen("answer", max_tokens=256, temperature=temp))
return forks
def reflect_solution(s, num_branches):
s += sgl.user(
"""Okay. Now, evaluate your own solution and give it a score on a scale of 1 to 5. Please do rigorous check of the correctness."""
)
forks = s.fork(num_branches)
forks += sgl.assistant(sgl.gen("score", max_tokens=256, temperature=temp))
return forks
def get_final_answer(s, num_branches):
s += sgl.user(
"""Based on your reflection, do you change your mind? Now, give me the final answer after careful consideration."""
)
forks = s.fork(num_branches)
forks += sgl.assistant(sgl.gen("final_answer", max_tokens=256, temperature=temp))
return forks
@sgl.function
def tree_search(s, question, num_branches):
plan_forks = propose_plan(s, question, num_branches)
sol_states = []
for plan in plan_forks:
forks = execute_plan(plan, num_branches)
sol_states.extend(forks)
ref_states = []
for sol in sol_states:
forks = reflect_solution(sol, num_branches)
ref_states.extend(forks)
solutions = []
for sol in ref_states:
forks = get_final_answer(sol, num_branches)
solutions.append(forks)
solutions = [[s.text() for s in forks] for forks in solutions]
return solutions
def main(args):
lines = read_jsonl(args.data_path)
lines = list(lines)
# Construct prompts
num_branches = 2
questions = []
labels = []
for i in range(len(lines[: args.num_questions])):
questions.append(lines[i]["question"])
labels.append(get_answer_value(lines[i]["answer"]))
assert all(l != INVALID for l in labels)
arguments = [{"question": q, "num_branches": num_branches} for q in questions]
# Select backend
backend = select_sglang_backend(args)
# Run requests
tic = time.perf_counter()
states = tree_search.run_batch(
arguments,
temperature=0,
backend=backend,
num_threads=args.parallel,
progress_bar=True,
)
latency = time.perf_counter() - tic
answers_text = []
for s in states:
answers_text.append([x for xs in s.ret_value for x in xs])
preds = []
for i in range(len(states)):
answers = [get_answer_value(v) for v in answers_text[i]]
preds.append(most_frequent_number(answers))
# Compute accuracy
acc = np.mean(np.array(preds) == np.array(labels))
invalid = np.mean(np.array(preds) == INVALID)
print(f"Latency: {latency:.3f}")
print(f"Invalid: {invalid:.3f}")
print(f"Accuracy: {acc:.3f}")
# Write results
dump_state_text(f"tmp_output_{args.backend}.txt", answers_text)
with open(args.result_file, "a") as fout:
value = {
"task": "tree_of_thought_gsm8k",
"backend": args.backend,
"num_gpus": 1,
"latency": round(latency, 3),
"accuracy": round(acc, 3),
"num_requests": args.num_questions,
"other": {
"num_questions": args.num_questions,
"parallel": args.parallel,
},
}
fout.write(json.dumps(value) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, default="test.jsonl")
parser.add_argument("--num-questions", type=int, default=200)
args = add_common_sglang_args_and_parse(parser)
main(args)