sglang_v0.5.2/sglang/docs/basic_usage/native_api.ipynb

498 lines
15 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SGLang Native APIs\n",
"\n",
"Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce the following APIs:\n",
"\n",
"- `/generate` (text generation model)\n",
"- `/get_model_info`\n",
"- `/get_server_info`\n",
"- `/health`\n",
"- `/health_generate`\n",
"- `/flush_cache`\n",
"- `/update_weights`\n",
"- `/encode`(embedding model)\n",
"- `/v1/rerank`(cross encoder rerank model)\n",
"- `/classify`(reward model)\n",
"- `/start_expert_distribution_record`\n",
"- `/stop_expert_distribution_record`\n",
"- `/dump_expert_distribution_record`\n",
"- A full list of these APIs can be found at [http_server.py](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/entrypoints/http_server.py)\n",
"\n",
"We mainly use `requests` to test these APIs in the following examples. You can also use `curl`.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Launch A Server"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sglang.test.doc_patch import launch_server_cmd\n",
"from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
"\n",
"server_process, port = launch_server_cmd(\n",
" \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --log-level warning\"\n",
")\n",
"\n",
"wait_for_server(f\"http://localhost:{port}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate (text generation model)\n",
"Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](sampling_params.md)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"url = f\"http://localhost:{port}/generate\"\n",
"data = {\"text\": \"What is the capital of France?\"}\n",
"\n",
"response = requests.post(url, json=data)\n",
"print_highlight(response.json())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get Model Info\n",
"\n",
"Get the information of the model.\n",
"\n",
"- `model_path`: The path/name of the model.\n",
"- `is_generation`: Whether the model is used as generation model or embedding model.\n",
"- `tokenizer_path`: The path/name of the tokenizer.\n",
"- `preferred_sampling_params`: The default sampling params specified via `--preferred-sampling-params`. `None` is returned in this example as we did not explicitly configure it in server args.\n",
"- `weight_version`: This field contains the version of the model weights. This is often used to track changes or updates to the models trained parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url = f\"http://localhost:{port}/get_model_info\"\n",
"\n",
"response = requests.get(url)\n",
"response_json = response.json()\n",
"print_highlight(response_json)\n",
"assert response_json[\"model_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
"assert response_json[\"is_generation\"] is True\n",
"assert response_json[\"tokenizer_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
"assert response_json[\"preferred_sampling_params\"] is None\n",
"assert response_json.keys() == {\n",
" \"model_path\",\n",
" \"is_generation\",\n",
" \"tokenizer_path\",\n",
" \"preferred_sampling_params\",\n",
" \"weight_version\",\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get Server Info\n",
"Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
"- Note: `get_server_info` merges the following deprecated endpoints:\n",
" - `get_server_args`\n",
" - `get_memory_pool_size` \n",
" - `get_max_total_num_tokens`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url = f\"http://localhost:{port}/get_server_info\"\n",
"\n",
"response = requests.get(url)\n",
"print_highlight(response.text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Health Check\n",
"- `/health`: Check the health of the server.\n",
"- `/health_generate`: Check the health of the server by generating one token."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url = f\"http://localhost:{port}/health_generate\"\n",
"\n",
"response = requests.get(url)\n",
"print_highlight(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url = f\"http://localhost:{port}/health\"\n",
"\n",
"response = requests.get(url)\n",
"print_highlight(response.text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Flush Cache\n",
"\n",
"Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"url = f\"http://localhost:{port}/flush_cache\"\n",
"\n",
"response = requests.post(url)\n",
"print_highlight(response.text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Update Weights From Disk\n",
"\n",
"Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
"\n",
"SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# successful update with same architecture and size\n",
"\n",
"url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
"data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct\"}\n",
"\n",
"response = requests.post(url, json=data)\n",
"print_highlight(response.text)\n",
"assert response.json()[\"success\"] is True\n",
"assert response.json()[\"message\"] == \"Succeeded to update model weights.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# failed update with different parameter size or wrong name\n",
"\n",
"url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
"data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct-wrong\"}\n",
"\n",
"response = requests.post(url, json=data)\n",
"response_json = response.json()\n",
"print_highlight(response_json)\n",
"assert response_json[\"success\"] is False\n",
"assert response_json[\"message\"] == (\n",
" \"Failed to get weights iterator: \"\n",
" \"qwen/qwen2.5-0.5b-instruct-wrong\"\n",
" \" (repository not found).\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(server_process)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Encode (embedding model)\n",
"\n",
"Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.ipynb) and will raise an error for generation models.\n",
"Therefore, we launch a new server to server an embedding model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embedding_process, port = launch_server_cmd(\n",
" \"\"\"\n",
"python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
" --host 0.0.0.0 --is-embedding --log-level warning\n",
"\"\"\"\n",
")\n",
"\n",
"wait_for_server(f\"http://localhost:{port}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# successful encode for embedding model\n",
"\n",
"url = f\"http://localhost:{port}/encode\"\n",
"data = {\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"text\": \"Once upon a time\"}\n",
"\n",
"response = requests.post(url, json=data)\n",
"response_json = response.json()\n",
"print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(embedding_process)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## v1/rerank (cross encoder rerank model)\n",
"Rerank a list of documents given a query using a cross-encoder model. Note that this API is only available for cross encoder model like [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with `attention-backend` `triton` and `torch_native`.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"reranker_process, port = launch_server_cmd(\n",
" \"\"\"\n",
"python3 -m sglang.launch_server --model-path BAAI/bge-reranker-v2-m3 \\\n",
" --host 0.0.0.0 --disable-radix-cache --chunked-prefill-size -1 --attention-backend triton --is-embedding --log-level warning\n",
"\"\"\"\n",
")\n",
"\n",
"wait_for_server(f\"http://localhost:{port}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# compute rerank scores for query and documents\n",
"\n",
"url = f\"http://localhost:{port}/v1/rerank\"\n",
"data = {\n",
" \"model\": \"BAAI/bge-reranker-v2-m3\",\n",
" \"query\": \"what is panda?\",\n",
" \"documents\": [\n",
" \"hi\",\n",
" \"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.\",\n",
" ],\n",
"}\n",
"\n",
"response = requests.post(url, json=data)\n",
"response_json = response.json()\n",
"for item in response_json:\n",
" print_highlight(f\"Score: {item['score']:.2f} - Document: '{item['document']}'\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(reranker_process)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Classify (reward model)\n",
"\n",
"SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
"# This will be updated in the future.\n",
"\n",
"reward_process, port = launch_server_cmd(\n",
" \"\"\"\n",
"python3 -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding --log-level warning\n",
"\"\"\"\n",
")\n",
"\n",
"wait_for_server(f\"http://localhost:{port}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"PROMPT = (\n",
" \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
")\n",
"\n",
"RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
"RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
"\n",
"CONVS = [\n",
" [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
" [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
"]\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
"prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
"\n",
"url = f\"http://localhost:{port}/classify\"\n",
"data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
"\n",
"responses = requests.post(url, json=data).json()\n",
"for response in responses:\n",
" print_highlight(f\"reward: {response['embedding'][0]}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(reward_process)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Capture expert selection distribution in MoE models\n",
"\n",
"SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization.\n",
"\n",
"*Note: We only print out the first 10 lines of the csv below for better readability. Please adjust accordingly if you want to analyze the results more deeply.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"expert_record_server_process, port = launch_server_cmd(\n",
" \"python3 -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0 --expert-distribution-recorder-mode stat --log-level warning\"\n",
")\n",
"\n",
"wait_for_server(f\"http://localhost:{port}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = requests.post(f\"http://localhost:{port}/start_expert_distribution_record\")\n",
"print_highlight(response)\n",
"\n",
"url = f\"http://localhost:{port}/generate\"\n",
"data = {\"text\": \"What is the capital of France?\"}\n",
"\n",
"response = requests.post(url, json=data)\n",
"print_highlight(response.json())\n",
"\n",
"response = requests.post(f\"http://localhost:{port}/stop_expert_distribution_record\")\n",
"print_highlight(response)\n",
"\n",
"response = requests.post(f\"http://localhost:{port}/dump_expert_distribution_record\")\n",
"print_highlight(response)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(expert_record_server_process)"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}