196 lines
5.2 KiB
Plaintext
196 lines
5.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# OpenAI APIs - Embedding\n",
|
|
"\n",
|
|
"SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
|
|
"A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/embeddings).\n",
|
|
"\n",
|
|
"This tutorial covers the embedding APIs for embedding models. For a list of the supported models see the [corresponding overview page](../supported_models/embedding_models.md)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Launch A Server\n",
|
|
"\n",
|
|
"Launch the server in your terminal and wait for it to initialize. Remember to add `--is-embedding` to the command."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sglang.test.doc_patch import launch_server_cmd\n",
|
|
"from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
|
|
"\n",
|
|
"embedding_process, port = launch_server_cmd(\n",
|
|
" \"\"\"\n",
|
|
"python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
|
|
" --host 0.0.0.0 --is-embedding --log-level warning\n",
|
|
"\"\"\"\n",
|
|
")\n",
|
|
"\n",
|
|
"wait_for_server(f\"http://localhost:{port}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Using cURL"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import subprocess, json\n",
|
|
"\n",
|
|
"text = \"Once upon a time\"\n",
|
|
"\n",
|
|
"curl_text = f\"\"\"curl -s http://localhost:{port}/v1/embeddings \\\n",
|
|
" -H \"Content-Type: application/json\" \\\n",
|
|
" -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": \"{text}\"}}'\"\"\"\n",
|
|
"\n",
|
|
"result = subprocess.check_output(curl_text, shell=True)\n",
|
|
"\n",
|
|
"print(result)\n",
|
|
"\n",
|
|
"text_embedding = json.loads(result)[\"data\"][0][\"embedding\"]\n",
|
|
"\n",
|
|
"print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Using Python Requests"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import requests\n",
|
|
"\n",
|
|
"text = \"Once upon a time\"\n",
|
|
"\n",
|
|
"response = requests.post(\n",
|
|
" f\"http://localhost:{port}/v1/embeddings\",\n",
|
|
" json={\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": text},\n",
|
|
")\n",
|
|
"\n",
|
|
"text_embedding = response.json()[\"data\"][0][\"embedding\"]\n",
|
|
"\n",
|
|
"print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Using OpenAI Python Client"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import openai\n",
|
|
"\n",
|
|
"client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
|
|
"\n",
|
|
"# Text embedding example\n",
|
|
"response = client.embeddings.create(\n",
|
|
" model=\"Alibaba-NLP/gte-Qwen2-1.5B-instruct\",\n",
|
|
" input=text,\n",
|
|
")\n",
|
|
"\n",
|
|
"embedding = response.data[0].embedding[:10]\n",
|
|
"print_highlight(f\"Text embedding (first 10): {embedding}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Using Input IDs\n",
|
|
"\n",
|
|
"SGLang also supports `input_ids` as input to get the embedding."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"import os\n",
|
|
"from transformers import AutoTokenizer\n",
|
|
"\n",
|
|
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
|
"\n",
|
|
"tokenizer = AutoTokenizer.from_pretrained(\"Alibaba-NLP/gte-Qwen2-1.5B-instruct\")\n",
|
|
"input_ids = tokenizer.encode(text)\n",
|
|
"\n",
|
|
"curl_ids = f\"\"\"curl -s http://localhost:{port}/v1/embeddings \\\n",
|
|
" -H \"Content-Type: application/json\" \\\n",
|
|
" -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": {json.dumps(input_ids)}}}'\"\"\"\n",
|
|
"\n",
|
|
"input_ids_embedding = json.loads(subprocess.check_output(curl_ids, shell=True))[\"data\"][\n",
|
|
" 0\n",
|
|
"][\"embedding\"]\n",
|
|
"\n",
|
|
"print_highlight(f\"Input IDs embedding (first 10): {input_ids_embedding[:10]}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"terminate_process(embedding_process)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Multi-Modal Embedding Model\n",
|
|
"Please refer to [Multi-Modal Embedding Model](../supported_models/embedding_models.md)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|