sglang_v0.5.2/sglang/examples/frontend_language/usage/json_logprobs.py

104 lines
3.2 KiB
Python

# NOTE: Currently this can only be run through HTTP requests.
from concurrent.futures import ThreadPoolExecutor
from json_decode import character_regex
from sglang.utils import http_request
character_names = ["Hermione Granger", "Ron Weasley", "Harry Potter"]
base_url = "http://localhost:30000"
prompt = "is a character in Harry Potter. Please fill in the following information about this character.\n"
def openai_api_request(name):
data = {
"model": "",
"prompt": name + prompt,
"temperature": 0,
"max_tokens": 128,
"regex": character_regex,
"logprobs": 3,
}
res = http_request(base_url + "/v1/completions", json=data).json()
# with open(f"json_logprobs_{name.replace(' ', '_')}_tmp.json", "w") as fout:
# fout.write(json.dumps(res, indent=4))
logprobs = res["choices"][0]["logprobs"]
usage = res["usage"]
assert len(logprobs["token_logprobs"]) == len(logprobs["tokens"])
assert len(logprobs["token_logprobs"]) == len(logprobs["top_logprobs"])
assert len(logprobs["token_logprobs"]) == usage["completion_tokens"] - 1
return res
def srt_api_request(name):
data = {
"text": name + prompt,
"sampling_params": {
"temperature": 0,
"max_new_tokens": 128,
"regex": character_regex,
},
"return_logprob": True,
"logprob_start_len": 0,
"top_logprobs_num": 3,
"return_text_in_logprobs": True,
}
res = http_request(base_url + "/generate", json=data).json()
# with open(f"json_logprobs_{name.replace(' ', '_')}_tmp.json", "w") as fout:
# fout.write(json.dumps(res, indent=4))
meta_info = res["meta_info"]
assert len(meta_info["input_token_logprobs"]) == len(
meta_info["input_top_logprobs"]
)
assert len(meta_info["output_token_logprobs"]) == len(
meta_info["output_top_logprobs"]
)
assert len(meta_info["input_token_logprobs"]) == meta_info["prompt_tokens"]
assert len(meta_info["output_token_logprobs"]) == meta_info["completion_tokens"] - 1
return res
def pretty_print(res):
meta_info = res["meta_info"]
print("\n\n", "=" * 30, "Prefill", "=" * 30)
for i in range(len(meta_info["input_token_logprobs"])):
print(f"{str(meta_info['input_token_logprobs'][i][2].encode()): <20}", end="")
top_ks = (
[str(t[2].encode()) for t in meta_info["input_top_logprobs"][i]]
if meta_info["input_top_logprobs"][i]
else []
)
for top_k in top_ks:
print(f"{top_k: <15}", end="")
print()
print("\n\n", "=" * 30, "Decode", "=" * 30)
for i in range(len(meta_info["output_token_logprobs"])):
print(f"{str(meta_info['output_token_logprobs'][i][2].encode()): <20}", end="")
top_ks = [str(t[2].encode()) for t in meta_info["output_top_logprobs"][i]]
for top_k in top_ks:
print(f"{top_k: <15}", end="")
print()
print(res["text"])
if __name__ == "__main__":
with ThreadPoolExecutor() as executor:
ress = executor.map(srt_api_request, character_names)
for res in ress:
pretty_print(res)
openai_api_request("Hermione Granger")