sglang_v0.5.2/sglang/examples/runtime/engine/offline_batch_inference_eag...

39 lines
1.2 KiB
Python

import sglang as sgl
def main():
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = {"temperature": 0, "max_new_tokens": 30}
# Create an LLM.
llm = sgl.Engine(
model_path="meta-llama/Llama-2-7b-chat-hf",
speculative_algorithm="EAGLE",
speculative_draft_model_path="lmsys/sglang-EAGLE-llama2-chat-7B",
speculative_num_steps=3,
speculative_eagle_topk=4,
speculative_num_draft_tokens=16,
cuda_graph_max_bs=8,
)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for prompt, output in zip(prompts, outputs):
print("===============================")
print(f"Prompt: {prompt}\nGenerated text: {output['text']}")
# The __main__ condition is necessary here because we use "spawn" to create subprocesses
# Spawn starts a fresh program every time, if there is no __main__, it will run into infinite loop to keep spawning processes from sgl.Engine
if __name__ == "__main__":
main()