sglang_v0.5.2/sglang/sgl-kernel/benchmark/bench_cutlass_mla.py

146 lines
3.9 KiB
Python

import argparse
import copy
import itertools
import torch
import triton
from sgl_kernel import cutlass_mla_decode, cutlass_mla_get_workspace_size
bs_range = [1, 8, 32, 64, 128, 256]
qlen_range = [1, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
configs = list(itertools.product(bs_range, qlen_range))
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len"],
x_vals=configs,
x_log=False,
line_arg="provider",
line_vals=[
"128 heads",
"64 heads",
"32 heads",
"16 heads",
],
line_names=[
"128 heads",
"64 heads",
"32 heads",
"16 heads",
],
styles=[("green", "-"), ("green", "--"), ("blue", "-"), ("blue", "--")],
ylabel="GB/s",
plot_name="cutlass mla",
args={},
)
)
def benchmark(batch_size, seq_len, provider, block_size, num_kv_splits):
d = 576
dn = 64
dv = 512
h_q_map = {
"128": 128,
"64": 64,
"32": 32,
"16": 16,
}
parsed_h_q = next(
(value for key, value in h_q_map.items() if key in provider), None
)
if parsed_h_q is None:
raise ValueError(f"Unknown head configuration in provider: {provider}")
h_q = parsed_h_q
seq_lens = torch.full((batch_size,), seq_len, dtype=torch.int32, device="cuda")
max_seq_len = seq_lens.max().item()
block_num = (max_seq_len + block_size - 1) // block_size
# Pad block_num so that small blocks can be packed into full 128-sized CUTLASS tiles.
# One 128-wide tile can hold (128 // block_size) small blocks.
pack_factor = 128 // block_size
block_num = ((block_num + pack_factor - 1) // pack_factor) * pack_factor
qn = (
torch.randn(h_q, batch_size, d - dn, dtype=torch.bfloat16, device="cuda")
* 100.0
)
qr = torch.randn(batch_size, h_q, dn, dtype=torch.bfloat16, device="cuda") * 100.0
block_table = torch.randint(
0,
batch_size * block_num,
(batch_size, block_num),
dtype=torch.int32,
device="cuda",
)
kv_cache = torch.randn(
block_table.numel(), block_size, d, dtype=torch.bfloat16, device="cuda"
)
workspace_size = cutlass_mla_get_workspace_size(
block_num * block_size, batch_size, num_kv_splits=num_kv_splits
)
workspace = torch.empty(workspace_size, device="cuda", dtype=torch.uint8)
quantiles = [0.5, 0.2, 0.8]
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: cutlass_mla_decode(
qn.transpose(0, 1),
qr,
kv_cache,
seq_lens,
block_table,
workspace,
1.44,
num_kv_splits,
),
quantiles=quantiles,
)
q_size = qn.numel() * qn.element_size() + qr.numel() * qr.element_size()
gbps = (
lambda ms: (
q_size + q_size * dv / d + kv_cache.numel() * kv_cache.element_size()
)
* 1e-9
/ (ms * 1e-3)
)
return gbps(ms), gbps(max_ms), gbps(min_ms)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--block-sizes",
nargs="+",
type=int,
default=[1, 32, 64, 128],
help="List of batch sizes",
)
parser.add_argument(
"--num-kv-splits",
nargs="+",
type=int,
default=[-1],
help="List of batch sizes",
)
args = parser.parse_args()
for block_size in args.block_sizes:
for kv_split in args.num_kv_splits:
print(f"block_size={block_size}, num_kv_splits={kv_split}: ")
benchmark.run(
print_data=True,
show_plots=True,
save_path="bench_blackwell_mla_res",
block_size=block_size,
num_kv_splits=kv_split,
)
print("Benchmark finished!")