sglang_v0.5.2/sglang/sgl-kernel/benchmark/bench_dsv3_fused_a_gemm.py

58 lines
1.4 KiB
Python

import argparse
import torch
import torch.nn.functional as F
import triton
import triton.testing
from sgl_kernel import dsv3_fused_a_gemm
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[i + 1 for i in range(16)],
x_log=False,
line_arg="impl",
line_vals=["torch", "sgl-kernel"],
line_names=["torch (bf16)", "dsv3_fused_a_gemm"],
styles=[("blue", "-"), ("orange", "-")],
ylabel="TFLOPs",
plot_name="bf16 dsv3 fused a GEMM throughput",
args={},
)
)
def benchmark(num_tokens, impl):
kHdIn = 7168
kHdOut = 2112
M, K, N = num_tokens, kHdIn, kHdOut
mat_a = torch.randn((M, K), dtype=torch.bfloat16, device="cuda").contiguous()
mat_b = torch.randn((N, K), dtype=torch.bfloat16, device="cuda").transpose(0, 1)
quantiles = [0.5, 0.2, 0.8]
if impl == "torch":
def runner():
F.linear(mat_a, mat_b.T)
elif impl == "sgl-kernel":
def runner():
dsv3_fused_a_gemm(mat_a, mat_b)
ms, min_ms, max_ms = triton.testing.do_bench(runner, quantiles=quantiles)
def tflops(t_ms):
flops = 2 * M * K * N
return flops / (t_ms * 1e-3) / 1e12
return tflops(ms), tflops(max_ms), tflops(min_ms)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
args = parser.parse_args()
benchmark.run(print_data=True, show_plots=True, save_path="bench_dsv3_gemm")