sglang_v0.5.2/sglang/sgl-kernel/benchmark/bench_int8_gemm.py

147 lines
4.1 KiB
Python

import argparse
import copy
import itertools
import torch
import triton
from sgl_kernel import int8_scaled_mm
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
WEIGHT_SHAPES = {
"meta-llama/Llama-3.1-8B-Instruct": [
([4096, 6144], 1),
([4096, 4096], 0),
([4096, 28672], 1),
([14336, 4096], 0),
],
"meta-llama/Llama-3.3-70B-Instruct": [
([8192, 10240], 1),
([8192, 8192], 0),
([8192, 57344], 1),
([28672, 8192], 0),
],
"mistralai/Mistral-Large-Instruct-2407": [
([12288, 14336], 1),
([12288, 12288], 0),
([12288, 57344], 1),
([28672, 12288], 0),
],
"Qwen/Qwen2.5-7B-Instruct": [
([3584, 4608], 1),
([3584, 3584], 0),
([3584, 37888], 1),
([18944, 3584], 0),
],
"Qwen/Qwen2.5-32B-Instruct": [
([5120, 7168], 1),
([5120, 5120], 0),
([5120, 55296], 1),
([27648, 5120], 0),
],
"Qwen/Qwen2.5-72B-Instruct": [
([8192, 10240], 1),
([8192, 8192], 0),
([8192, 59136], 1),
([29568, 8192], 0),
],
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [
([2048, 3072], 1),
([2048, 4096], 1),
([2048, 2048], 0),
([2048, 576], 0),
([2048, 21888], 1),
([10944, 2048], 0),
([2048, 2816], 1),
([1408, 2048], 0),
],
}
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048],
x_log=False,
line_arg="provider",
line_vals=["vllm", "sgl-kernel"],
line_names=["vllm int8 gemm", "sgl-kernel int8 gemm"],
styles=[("blue", "-"), ("orange", "-")],
ylabel="GB/s",
plot_name="int8 scaled matmul",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
a = to_int8(torch.randn((M, K), device="cuda") * 5)
b = to_int8(torch.randn((N, K), device="cuda").t() * 5)
scale_a = torch.randn((M,), device="cuda", dtype=torch.float32)
scale_b = torch.randn((N,), device="cuda", dtype=torch.float32)
bias = torch.randn((N,), device="cuda", dtype=torch.float16)
quantiles = [0.5, 0.2, 0.8]
if provider == "sgl-kernel":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: int8_scaled_mm(a, b, scale_a, scale_b, torch.float16, bias),
quantiles=quantiles,
)
if provider == "vllm":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: vllm_scaled_mm(a, b, scale_a, scale_b, torch.float16, bias),
quantiles=quantiles,
)
gbps = (
lambda ms: (
(2 * M * N * K - M * N) * a.element_size()
+ (3 * M * N) * scale_a.element_size()
)
* 1e-9
/ (ms * 1e-3)
)
return gbps(ms), gbps(max_ms), gbps(min_ms)
def prepare_shapes(args):
KN_model_names = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
assert model in WEIGHT_SHAPES
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KN.append(model)
KN_model_names.append(KN)
return KN_model_names
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
help="List of models to benchmark",
)
parser.add_argument(
"--tp-sizes",
nargs="+",
type=int,
default=[1],
help="List of tensor parallel sizes",
)
args = parser.parse_args()
KN_model_names = prepare_shapes(args)
for K, N, model_name in KN_model_names:
print(f"{model_name} N={N} K={K}: ")
benchmark.run(
print_data=True, show_plots=True, save_path="bench_int8_res", N=N, K=K
)
print("Benchmark finished!")