sglang_v0.5.2/sglang/sgl-kernel/benchmark/bench_qserve_w4a8_gemm.py

199 lines
5.9 KiB
Python

import argparse
import copy
import itertools
import torch
import triton
from sgl_kernel import (
int8_scaled_mm,
qserve_w4a8_per_chn_gemm,
qserve_w4a8_per_group_gemm,
)
def to_int8(tensor: torch.Tensor) -> torch.Tensor:
return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8)
WEIGHT_SHAPES = {
"meta-llama/Llama-3.1-8B-Instruct": [
([4096, 6144], 1),
([4096, 4096], 0),
([4096, 28672], 1),
([14336, 4096], 0),
],
"meta-llama/Llama-3.3-70B-Instruct": [
([8192, 10240], 1),
([8192, 8192], 0),
([8192, 57344], 1),
([28672, 8192], 0),
],
"mistralai/Mistral-Large-Instruct-2407": [
([12288, 14336], 1),
([12288, 12288], 0),
([12288, 57344], 1),
([28672, 12288], 0),
],
"Qwen/Qwen2.5-7B-Instruct": [
([3584, 4608], 1),
([3584, 3584], 0),
([3584, 37888], 1),
([18944, 3584], 0),
],
"Qwen/Qwen2.5-32B-Instruct": [
([5120, 7168], 1),
([5120, 5120], 0),
([5120, 55296], 1),
([27648, 5120], 0),
],
"Qwen/Qwen2.5-72B-Instruct": [
([8192, 10240], 1),
([8192, 8192], 0),
([8192, 59136], 1),
([29568, 8192], 0),
],
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [
([2048, 3072], 1),
([2048, 4096], 1),
([2048, 2048], 0),
([2048, 576], 0),
([2048, 21888], 1),
([10944, 2048], 0),
([2048, 2816], 1),
([1408, 2048], 0),
],
}
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048],
x_log=False,
line_arg="provider",
line_vals=["FP16", "W8A8", "Qserve_W4A8_Per_Channel", "Qserve_W4A8_Per_Group"],
line_names=["FP16", "W8A8", "Qserve_W4A8_Per_Channel", "Qserve_W4A8_Per_Group"],
styles=[("blue", "-"), ("orange", "-"), ("green", "-"), ("red", "-")],
ylabel="ms",
plot_name="FP16_vs_W8A8_vs_Qserve_W4A8_GEMM",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
# For W8A8
a = to_int8(torch.randn((M, K), device="cuda") * 5)
b = to_int8(torch.randn((N, K), device="cuda").t() * 5)
a_fp16 = a.to(torch.float16)
b_fp16 = b.to(torch.float16)
scale_a = torch.randn((M,), device="cuda", dtype=torch.float32)
scale_b = torch.randn((N,), device="cuda", dtype=torch.float32)
# For Qserve W4A8 per channel
a_qserve_chn = a
# two int4s pack into one int8
b_qserve_chn = to_int8(torch.randn((N, K // 2), device="cuda") * 5)
# b_qserve_chn = b.t().contiguous()
scale_a_qserve_chn = scale_a.to(torch.float16)
scale_b_qserve_chn = scale_b.to(torch.float16)
szero_b_qserve_chn = torch.randn((N,), device="cuda", dtype=torch.float16)
a_sum_qserve_chn = torch.randn((M,), device="cuda", dtype=torch.float16)
# For Qserve W4A8 per group
group_size = 128
assert K % group_size == 0, "K must be divisible by group_size"
a_qserve_group = a
# two int4s pack into one int8
b_qserve_group = to_int8(torch.randn((N, K // 2), device="cuda") * 5)
# b_qserve_group = b.t().contiguous()
scale_a_qserve_group = scale_a.to(torch.float16)
scale_b_qserve_group = scale_b.to(torch.float16)
scale_i8_b_qserve_group = to_int8(
torch.randn((K // group_size, N), device="cuda", dtype=torch.float16)
)
zero_i8_b_qserve_group = to_int8(
torch.randn((K // group_size, N), device="cuda", dtype=torch.float16)
)
quantiles = [0.5, 0.2, 0.8]
if provider == "FP16":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: torch.matmul(a_fp16, b_fp16),
quantiles=quantiles,
)
if provider == "W8A8":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: int8_scaled_mm(a, b, scale_a, scale_b, torch.float16),
quantiles=quantiles,
)
if provider == "Qserve_W4A8_Per_Channel":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: qserve_w4a8_per_chn_gemm(
a_qserve_chn,
b_qserve_chn,
scale_b_qserve_chn,
scale_a_qserve_chn,
szero_b_qserve_chn,
a_sum_qserve_chn,
),
quantiles=quantiles,
)
if provider == "Qserve_W4A8_Per_Group":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: qserve_w4a8_per_group_gemm(
a_qserve_group,
b_qserve_group,
zero_i8_b_qserve_group,
scale_i8_b_qserve_group,
scale_b_qserve_group,
scale_a_qserve_group,
),
quantiles=quantiles,
)
return ms, max_ms, min_ms
def prepare_shapes(args):
KN_model_names = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
assert model in WEIGHT_SHAPES
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KN.append(model)
KN_model_names.append(KN)
return KN_model_names
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
help="List of models to benchmark",
)
parser.add_argument(
"--tp-sizes",
nargs="+",
type=int,
default=[1],
help="List of tensor parallel sizes",
)
args = parser.parse_args()
KN_model_names = prepare_shapes(args)
for K, N, model_name in KN_model_names:
print(f"{model_name} N={N} K={K}: ")
benchmark.run(
print_data=True,
show_plots=True,
save_path="bench_qserve_w4a8_gemm_res",
N=N,
K=K,
)
print("Benchmark finished!")