1369 lines
51 KiB
Python
1369 lines
51 KiB
Python
# Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/test_flash_attn.py
|
|
import itertools
|
|
import math
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, repeat
|
|
|
|
apply_rotary_emb = None
|
|
|
|
|
|
def is_hopper():
|
|
# Only Hopper supports different V headdim
|
|
return torch.cuda.get_device_properties(0).major == 9
|
|
|
|
|
|
def is_fa3_supported(device=None) -> bool:
|
|
# There some fa3 FYI
|
|
# FA3 can fail without a enough shared memory for a some shapes, such as higher
|
|
# hidden_dim or some special cases.
|
|
# Right now, fa3 is supported for sm80/sm87 and sm86/sm89. The main different
|
|
# Between sm80/sm87 and sm86/sm89 is the shared memory size. you can follow the link below for more information
|
|
# https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x
|
|
# And for sgl-kernel right now, we can build fa3 on sm80/sm86/sm89/sm90a.
|
|
# That means if you use A100/A*0/L20/L40/L40s/4090 you can use fa3.
|
|
return (torch.version.cuda >= "12.3") and (
|
|
torch.cuda.get_device_capability(device)[0] == 9
|
|
or torch.cuda.get_device_capability(device)[0] == 8
|
|
)
|
|
|
|
|
|
DISABLE_BACKWARD = True
|
|
# For CI test, we close them to True.
|
|
# DISABLE_SPLIT = os.getenv("FLASH_ATTENTION_DISABLE_SPLIT", "FALSE") == "TRUE"
|
|
# DISABLE_PAGEDKV = os.getenv("FLASH_ATTENTION_DISABLE_PAGEDKV", "FALSE") == "TRUE"
|
|
# DISABLE_APPENDKV = os.getenv("FLASH_ATTENTION_DISABLE_APPENDKV", "FALSE") == "TRUE"
|
|
# DISABLE_LOCAL = os.getenv("FLASH_ATTENTION_DISABLE_LOCAL", "FALSE") == "TRUE"
|
|
# DISABLE_SOFTCAP = os.getenv("FLASH_ATTENTION_DISABLE_SOFTCAP", "FALSE") == "TRUE"
|
|
# DISABLE_PACKGQA = os.getenv("FLASH_ATTENTION_DISABLE_PACKGQA", "FALSE") == "TRUE"
|
|
# DISABLE_FP16 = os.getenv("FLASH_ATTENTION_DISABLE_FP16", "FALSE") == "TRUE"
|
|
# DISABLE_FP8 = (
|
|
# os.getenv("FLASH_ATTENTION_DISABLE_FP8", "FALSE") == "TRUE"
|
|
# or torch.cuda.get_device_capability("cuda")[0] < 9
|
|
# )
|
|
|
|
DISABLE_SPLIT = False
|
|
DISABLE_PAGEDKV = True
|
|
DISABLE_APPENDKV = False
|
|
DISABLE_LOCAL = False
|
|
DISABLE_SOFTCAP = True
|
|
DISABLE_PACKGQA = False
|
|
DISABLE_FP16 = True
|
|
DISABLE_FP8 = True
|
|
|
|
|
|
# Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/padding.py
|
|
def unpad_input(hidden_states, attention_mask, unused_mask=None):
|
|
"""
|
|
Arguments:
|
|
hidden_states: (batch, seqlen, ...)
|
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
|
unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused.
|
|
Return:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask.
|
|
indices: (total_nnz), the indices of masked tokens from the flattened input sequence.
|
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
|
max_seqlen_in_batch: int
|
|
seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask.
|
|
"""
|
|
all_masks = (
|
|
(attention_mask + unused_mask) if unused_mask is not None else attention_mask
|
|
)
|
|
seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32)
|
|
used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
|
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
|
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
|
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
|
# index with integer indices.
|
|
return (
|
|
rearrange(hidden_states, "b s ... -> (b s) ...")[indices],
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
used_seqlens_in_batch,
|
|
)
|
|
|
|
|
|
def generate_random_padding_mask(
|
|
max_seqlen, batch_size, device, mode="random", zero_lengths=False
|
|
):
|
|
assert mode in ["full", "random", "third"]
|
|
if mode == "full":
|
|
lengths = torch.full(
|
|
(batch_size, 1), max_seqlen, device=device, dtype=torch.int32
|
|
)
|
|
elif mode == "random":
|
|
lengths = torch.randint(
|
|
max(0 if zero_lengths else 1, max_seqlen - 20),
|
|
max_seqlen + 1,
|
|
(batch_size, 1),
|
|
device=device,
|
|
)
|
|
elif mode == "third":
|
|
lengths = torch.randint(
|
|
max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device
|
|
)
|
|
|
|
if zero_lengths:
|
|
# Generate zero-lengths every 5 batches and the last batch.
|
|
for i in range(batch_size):
|
|
if i % 5 == 0:
|
|
lengths[i] = 0
|
|
lengths[-1] = 0
|
|
padding_mask = (
|
|
repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size)
|
|
< lengths
|
|
)
|
|
return padding_mask
|
|
|
|
|
|
def pad_input(hidden_states, indices, batch, seqlen):
|
|
"""
|
|
Arguments:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
|
|
batch: int, batch size for the padded sequence.
|
|
seqlen: int, maximum sequence length for the padded sequence.
|
|
Return:
|
|
hidden_states: (batch, seqlen, ...)
|
|
"""
|
|
dim = hidden_states.shape[1:]
|
|
output = torch.zeros(
|
|
(batch * seqlen), *dim, device=hidden_states.device, dtype=hidden_states.dtype
|
|
)
|
|
output[indices] = hidden_states
|
|
return rearrange(output, "(b s) ... -> b s ...", b=batch)
|
|
|
|
|
|
def construct_local_mask(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
sink_token_length=0,
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
key_leftpad=None,
|
|
device=None,
|
|
):
|
|
row_idx = rearrange(
|
|
torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1"
|
|
)
|
|
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
|
|
if key_leftpad is not None:
|
|
key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
|
|
col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
|
|
col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
|
|
sk = (
|
|
seqlen_k
|
|
if key_padding_mask is None
|
|
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
)
|
|
sq = (
|
|
seqlen_q
|
|
if query_padding_mask is None
|
|
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
)
|
|
if window_size[0] < 0:
|
|
return col_idx > row_idx + sk - sq + window_size[1]
|
|
else:
|
|
sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
|
|
return torch.logical_or(
|
|
col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
|
|
torch.logical_and(
|
|
col_idx < row_idx + sk - sq - window_size[0],
|
|
col_idx >= sink_token_length,
|
|
),
|
|
)
|
|
|
|
|
|
def attention_ref(
|
|
q,
|
|
k,
|
|
v,
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
key_leftpad=None,
|
|
attn_bias=None,
|
|
dropout_p=0.0,
|
|
dropout_mask=None,
|
|
causal=False,
|
|
qv=None,
|
|
q_descale=None,
|
|
k_descale=None,
|
|
v_descale=None,
|
|
window_size=(-1, -1), # -1 means infinite window size
|
|
sink_token_length=0,
|
|
sinks: Optional[torch.Tensor] = None,
|
|
softcap=0.0,
|
|
upcast=True,
|
|
reorder_ops=False,
|
|
intermediate_dtype=None,
|
|
):
|
|
"""
|
|
Arguments:
|
|
q: (batch_size, seqlen_q, nheads, head_dim)
|
|
k: (batch_size, seqlen_k, nheads, head_dim)
|
|
v: (batch_size, seqlen_k, nheads, head_dim_v)
|
|
qv: (batch_size, seqlen_q, nheads, head_dim_v)
|
|
query_padding_mask: (batch_size, seqlen_q)
|
|
key_padding_mask: (batch_size, seqlen_k)
|
|
attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
|
|
dropout_p: float
|
|
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
|
|
causal: whether to apply causal masking
|
|
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
|
|
output back to fp16/bf16.
|
|
reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
|
|
without changing the math. This is to estimate the numerical error from operation
|
|
reordering.
|
|
Output:
|
|
output: (batch_size, seqlen_q, nheads, head_dim_v)
|
|
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
|
|
"""
|
|
if causal:
|
|
window_size = (window_size[0], 0)
|
|
dtype_og = q.dtype
|
|
if upcast:
|
|
q, k, v = q.float(), k.float(), v.float()
|
|
qv = qv.float() if qv is not None else None
|
|
if q_descale is not None:
|
|
q_descale = repeat(q_descale, "b h -> b 1 (h g) 1", g=q.shape[2] // k.shape[2])
|
|
q = (q.float() * q_descale).to(q.dtype)
|
|
qv = (qv.float() * q_descale).to(qv.dtype) if qv is not None else None
|
|
if k_descale is not None:
|
|
k = (k.float() * rearrange(k_descale, "b h -> b 1 h 1")).to(dtype=k.dtype)
|
|
if v_descale is not None:
|
|
v = (v.float() * rearrange(v_descale, "b h -> b 1 h 1")).to(dtype=v.dtype)
|
|
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
|
|
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
|
|
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
|
|
d = q.shape[-1]
|
|
dv = v.shape[-1]
|
|
softmax_scale = 1.0 / math.sqrt(d if qv is None else d + dv)
|
|
if not reorder_ops:
|
|
scores = torch.einsum("bthd,bshd->bhts", q * softmax_scale, k)
|
|
else:
|
|
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
|
if qv is not None:
|
|
scores = scores + torch.einsum("bthd,bshd->bhts", qv * softmax_scale, v)
|
|
if softcap > 0:
|
|
scores = torch.tanh(scores / softcap) * softcap
|
|
if key_padding_mask is not None:
|
|
scores.masked_fill_(
|
|
rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf")
|
|
)
|
|
if window_size[0] >= 0 or window_size[1] >= 0:
|
|
local_mask = construct_local_mask(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
window_size,
|
|
sink_token_length,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
key_leftpad=key_leftpad,
|
|
device=q.device,
|
|
)
|
|
scores.masked_fill_(local_mask, float("-inf"))
|
|
if attn_bias is not None:
|
|
scores = scores + attn_bias
|
|
if sinks is None:
|
|
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
|
else:
|
|
scores_fp32 = scores.to(torch.float32)
|
|
logits_max = torch.amax(scores_fp32, dim=-1, keepdim=True)
|
|
sinks = rearrange(sinks, "h -> h 1 1")
|
|
logits_or_sinks_max = torch.maximum(sinks, logits_max)
|
|
unnormalized_scores = torch.exp(scores_fp32 - logits_or_sinks_max)
|
|
normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + torch.exp(
|
|
sinks - logits_or_sinks_max
|
|
)
|
|
attention = (unnormalized_scores / normalizer).to(v.dtype)
|
|
# We want to mask here so that the attention matrix doesn't have any NaNs
|
|
# Otherwise we'll get NaN in dV
|
|
if query_padding_mask is not None:
|
|
attention = attention.masked_fill(
|
|
rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0
|
|
)
|
|
# Without this we might get NaN in dv
|
|
if key_padding_mask is not None:
|
|
attention = attention.masked_fill(
|
|
rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0
|
|
)
|
|
# Some rows might be completely masked out so we fill them with zero instead of NaN
|
|
if window_size[0] >= 0 or window_size[1] >= 0:
|
|
attention = attention.masked_fill(
|
|
torch.all(local_mask, dim=-1, keepdim=True), 0.0
|
|
)
|
|
dropout_scaling = 1.0 / (1 - dropout_p)
|
|
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
|
|
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
|
|
if dropout_mask is not None:
|
|
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
|
|
else:
|
|
attention_drop = attention
|
|
if intermediate_dtype is not None:
|
|
attention_drop = attention_drop.to(intermediate_dtype).to(attention_drop.dtype)
|
|
output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
|
|
if query_padding_mask is not None:
|
|
output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
|
|
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
|
|
|
|
|
|
def generate_qkv(
|
|
q,
|
|
k,
|
|
v,
|
|
query_padding_mask=None,
|
|
key_padding_mask=None,
|
|
kvpacked=False,
|
|
qkvpacked=False,
|
|
add_unused_qkv=False,
|
|
query_unused_mask=None,
|
|
key_unused_mask=None,
|
|
):
|
|
"""
|
|
Arguments:
|
|
q: (batch_size, seqlen_q, nheads, d)
|
|
k: (batch_size, seqlen_k, nheads_k, d)
|
|
v: (batch_size, seqlen_k, nheads_k, d)
|
|
query_padding_mask: (batch_size, seqlen), bool
|
|
key_padding_mask: (batch_size, seqlen), bool
|
|
"""
|
|
assert not (kvpacked and qkvpacked)
|
|
batch_size, seqlen_q, nheads, d = q.shape
|
|
_, seqlen_k, nheads_k, _ = k.shape
|
|
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
|
|
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
|
|
if query_unused_mask is not None or key_unused_mask is not None:
|
|
assert not kvpacked
|
|
assert not qkvpacked
|
|
|
|
if query_padding_mask is not None:
|
|
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input(
|
|
q,
|
|
query_padding_mask,
|
|
query_unused_mask,
|
|
)
|
|
output_pad_fn = lambda output_unpad: pad_input(
|
|
output_unpad, indices_q, batch_size, seqlen_q
|
|
)
|
|
else:
|
|
q_unpad = rearrange(q, "b s h d -> (b s) h d")
|
|
cu_seqlens_q = torch.arange(
|
|
0,
|
|
(batch_size + 1) * seqlen_q,
|
|
step=seqlen_q,
|
|
dtype=torch.int32,
|
|
device=q_unpad.device,
|
|
)
|
|
seqused_q = None
|
|
max_seqlen_q = seqlen_q
|
|
output_pad_fn = lambda output_unpad: rearrange(
|
|
output_unpad, "(b s) h d -> b s h d", b=batch_size
|
|
)
|
|
|
|
if key_padding_mask is not None:
|
|
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input(
|
|
k, key_padding_mask, key_unused_mask
|
|
)
|
|
v_unpad, _, _, _, _ = unpad_input(v, key_padding_mask, key_unused_mask)
|
|
else:
|
|
k_unpad = rearrange(k, "b s h d -> (b s) h d")
|
|
v_unpad = rearrange(v, "b s h d -> (b s) h d")
|
|
cu_seqlens_k = torch.arange(
|
|
0,
|
|
(batch_size + 1) * seqlen_k,
|
|
step=seqlen_k,
|
|
dtype=torch.int32,
|
|
device=k_unpad.device,
|
|
)
|
|
seqused_k = None
|
|
max_seqlen_k = seqlen_k
|
|
|
|
if qkvpacked:
|
|
assert (query_padding_mask == key_padding_mask).all()
|
|
assert nheads == nheads_k
|
|
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
|
|
qkv = torch.stack([q, k, v], dim=2)
|
|
if query_padding_mask is not None:
|
|
dqkv_pad_fn = lambda dqkv_unpad: pad_input(
|
|
dqkv_unpad, indices_q, batch_size, seqlen_q
|
|
)
|
|
else:
|
|
dqkv_pad_fn = lambda dqkv_unpad: rearrange(
|
|
dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
|
)
|
|
return (
|
|
qkv_unpad.detach().requires_grad_(),
|
|
cu_seqlens_q,
|
|
max_seqlen_q,
|
|
qkv.detach().requires_grad_(),
|
|
output_pad_fn,
|
|
dqkv_pad_fn,
|
|
)
|
|
elif kvpacked:
|
|
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
|
|
kv = torch.stack([k, v], dim=2)
|
|
dq_pad_fn = output_pad_fn
|
|
if key_padding_mask is not None:
|
|
dkv_pad_fn = lambda dkv_unpad: pad_input(
|
|
dkv_unpad, indices_k, batch_size, seqlen_k
|
|
)
|
|
else:
|
|
dkv_pad_fn = lambda dkv_unpad: rearrange(
|
|
dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
|
)
|
|
return (
|
|
q_unpad.detach().requires_grad_(),
|
|
kv_unpad.detach().requires_grad_(),
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
q.detach().requires_grad_(),
|
|
kv.detach().requires_grad_(),
|
|
output_pad_fn,
|
|
dq_pad_fn,
|
|
dkv_pad_fn,
|
|
)
|
|
else:
|
|
dq_pad_fn = output_pad_fn
|
|
if key_padding_mask is not None:
|
|
dk_pad_fn = lambda dk_unpad: pad_input(
|
|
dk_unpad, indices_k, batch_size, seqlen_k
|
|
)
|
|
else:
|
|
dk_pad_fn = lambda dk_unpad: rearrange(
|
|
dk_unpad, "(b s) h d -> b s h d", b=batch_size
|
|
)
|
|
return (
|
|
q_unpad.detach().requires_grad_(),
|
|
k_unpad.detach().requires_grad_(),
|
|
v_unpad.detach().requires_grad_(),
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
seqused_q,
|
|
seqused_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
q.detach().requires_grad_(),
|
|
k.detach().requires_grad_(),
|
|
v.detach().requires_grad_(),
|
|
output_pad_fn,
|
|
dq_pad_fn,
|
|
dk_pad_fn,
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not is_fa3_supported(),
|
|
reason="flash_attn at sgl-kernel is only supported on sm90 or sm80",
|
|
)
|
|
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
|
|
@pytest.mark.parametrize(
|
|
"dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else [])
|
|
)
|
|
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
|
|
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
|
|
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
|
|
# @pytest.mark.parametrize("mha_type", ["mha"])
|
|
@pytest.mark.parametrize("has_sink", [False, True])
|
|
# @pytest.mark.parametrize("has_sink", [False])
|
|
@pytest.mark.parametrize("new_kv", [False] + ([True] if not DISABLE_APPENDKV else []))
|
|
# @pytest.mark.parametrize("new_kv", [True])
|
|
# @pytest.mark.parametrize(
|
|
# "causal,local",
|
|
# [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []),
|
|
# )
|
|
# @pytest.mark.parametrize("causal,local", [(False, False), (True, False)])
|
|
@pytest.mark.parametrize("causal,local", [(False, False)])
|
|
@pytest.mark.parametrize(
|
|
"seqlen_new_eq_seqlen_q", [True, False] if not DISABLE_APPENDKV else [True]
|
|
)
|
|
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
|
|
# @pytest.mark.parametrize("has_rotary_seqlens", [False, True])
|
|
@pytest.mark.parametrize("has_rotary_seqlens", [False])
|
|
@pytest.mark.parametrize(
|
|
"rotary_interleaved", [False, True] if not DISABLE_APPENDKV else [False]
|
|
)
|
|
# @pytest.mark.parametrize("rotary_interleaved", [True])
|
|
@pytest.mark.parametrize(
|
|
"rotary_fraction",
|
|
(
|
|
[0.0, 0.5, 1.0]
|
|
if (not DISABLE_APPENDKV) and (apply_rotary_emb is not None)
|
|
else [0.0]
|
|
),
|
|
)
|
|
# @pytest.mark.parametrize("rotary_fraction", [0.0])
|
|
@pytest.mark.parametrize(
|
|
"page_size", [None] + ([1, 4, 128] if not DISABLE_PAGEDKV else [])
|
|
)
|
|
# @pytest.mark.parametrize("page_size", [None])
|
|
# @pytest.mark.parametrize("has_leftpad", [False, True])
|
|
@pytest.mark.parametrize("has_leftpad", [False])
|
|
# @pytest.mark.parametrize("has_batch_idx", [False, True])
|
|
@pytest.mark.parametrize("has_batch_idx", [False])
|
|
# @pytest.mark.parametrize("varlen_q", [False, True])
|
|
@pytest.mark.parametrize("varlen_q", [False])
|
|
# @pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
|
|
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
|
|
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
|
|
# @pytest.mark.parametrize('d', [56, 80])
|
|
@pytest.mark.parametrize("d", [64])
|
|
# @pytest.mark.parametrize("d", [192])
|
|
@pytest.mark.parametrize(
|
|
"seqlen_q,seqlen_k",
|
|
[
|
|
(1, 128),
|
|
(1, 339),
|
|
(3, 1024),
|
|
(64, 800),
|
|
(64, 256),
|
|
(3, 799),
|
|
(64, 2048),
|
|
(16, 20000),
|
|
# (1, 128 * 1024),
|
|
# (16, 128 * 1024),
|
|
(128, 128),
|
|
(256, 512), # To test appending KV with more than 1 block
|
|
(2048, 3577), # Enough tile to test persistent scheduler
|
|
],
|
|
)
|
|
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
|
|
def test_flash_attn_kvcache(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
d,
|
|
varlen_q,
|
|
has_batch_idx,
|
|
has_leftpad,
|
|
page_size,
|
|
rotary_fraction,
|
|
rotary_interleaved,
|
|
has_rotary_seqlens,
|
|
seqlen_new_eq_seqlen_q,
|
|
causal,
|
|
local,
|
|
new_kv,
|
|
mha_type,
|
|
dtype,
|
|
has_sink,
|
|
):
|
|
from sgl_kernel.flash_attn import flash_attn_with_kvcache
|
|
|
|
if page_size is not None and seqlen_k % page_size != 0:
|
|
pytest.skip()
|
|
if seqlen_q > seqlen_k and new_kv:
|
|
pytest.skip()
|
|
if not new_kv and rotary_fraction > 0.0:
|
|
pytest.skip()
|
|
if rotary_fraction == 0.0 and has_rotary_seqlens:
|
|
pytest.skip()
|
|
device = "cuda"
|
|
# set seed
|
|
torch.random.manual_seed(0)
|
|
batch_size = 5
|
|
# batch_size = 1
|
|
batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
|
|
nheads = 6
|
|
# nheads = 1
|
|
# rotary_dim must be a multiple of 16, and must be <= d
|
|
rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
|
|
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
|
|
assert nheads % nheads_k == 0
|
|
dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
|
|
dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
|
|
|
|
if has_sink:
|
|
sinks = torch.randn(nheads, dtype=torch.bfloat16, device=device)
|
|
else:
|
|
sinks = None
|
|
|
|
if dtype == torch.float8_e4m3fn or not is_hopper():
|
|
# for fp8 and ampere arch, we not support v head dim != qk head dim
|
|
dv_vals = [d]
|
|
for dv in dv_vals:
|
|
has_qv = d == 64 and dv >= 256
|
|
q = (
|
|
torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
if has_qv:
|
|
qv = (
|
|
torch.randn(
|
|
batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
else:
|
|
qv = None
|
|
if varlen_q:
|
|
query_padding_mask = generate_random_padding_mask(
|
|
seqlen_q, batch_size, device, mode="random"
|
|
)
|
|
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input(
|
|
q, query_padding_mask
|
|
)
|
|
output_pad_fn = lambda output_unpad: pad_input(
|
|
output_unpad, indices_q, batch_size, seqlen_q
|
|
)
|
|
qv_unpad = (
|
|
rearrange(qv, "b s ... -> (b s) ...")[indices_q] if has_qv else None
|
|
)
|
|
else:
|
|
query_padding_mask = None
|
|
q_unpad = q
|
|
qv_unpad = qv
|
|
cu_seqlens_q, max_seqlen_q = None, None
|
|
# Put window_size after QKV randn so that window_size changes from test to test
|
|
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
|
|
|
|
seqlen_new = (
|
|
seqlen_q
|
|
if seqlen_new_eq_seqlen_q
|
|
else torch.randint(1, seqlen_q + 1, (1,)).item()
|
|
)
|
|
cu_seqlens_k_new = None
|
|
key_new_padding_mask = None
|
|
if new_kv:
|
|
k = (
|
|
torch.randn(
|
|
batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
v = (
|
|
torch.randn(
|
|
batch_size, seqlen_new, nheads_k, dv, device=device, dtype=dtype_ref
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
if varlen_q: # k & v are also varlen
|
|
key_new_padding_mask = generate_random_padding_mask(
|
|
seqlen_new, batch_size, device, mode="random"
|
|
)
|
|
k_unpad, indices_k, cu_seqlens_k_new, *rest = unpad_input(
|
|
k, key_new_padding_mask
|
|
)
|
|
v_unpad, *rest = unpad_input(v, key_new_padding_mask)
|
|
else:
|
|
k_unpad, v_unpad = k, v
|
|
else:
|
|
k, v, k_unpad, v_unpad = None, None, None, None
|
|
if page_size is None:
|
|
k_cache = (
|
|
torch.randn(
|
|
batch_size_cache,
|
|
seqlen_k,
|
|
nheads_k,
|
|
d,
|
|
device=device,
|
|
dtype=dtype_ref,
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
v_cache = (
|
|
torch.randn(
|
|
batch_size_cache,
|
|
seqlen_k,
|
|
nheads_k,
|
|
dv,
|
|
device=device,
|
|
dtype=dtype_ref,
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
page_table = None
|
|
else:
|
|
(
|
|
k_cache,
|
|
v_cache,
|
|
page_table,
|
|
k_cache_paged,
|
|
v_cache_paged,
|
|
num_blocks,
|
|
) = _generate_block_kvcache(
|
|
seqlen_k,
|
|
page_size,
|
|
batch_size_cache,
|
|
nheads_k,
|
|
d,
|
|
dv,
|
|
device,
|
|
dtype,
|
|
dtype_ref,
|
|
)
|
|
cache_seqlens = torch.randint(
|
|
0 if new_kv else 1,
|
|
# If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
|
|
(
|
|
(
|
|
seqlen_k
|
|
- (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new)
|
|
+ 1
|
|
)
|
|
if new_kv
|
|
else (seqlen_k + 1)
|
|
),
|
|
(batch_size,),
|
|
dtype=torch.int32,
|
|
device=device,
|
|
)
|
|
if has_leftpad:
|
|
cache_leftpad = torch.cat(
|
|
[
|
|
(
|
|
torch.randint(
|
|
0,
|
|
cache_seqlens[i].item(),
|
|
(1,),
|
|
dtype=torch.int32,
|
|
device=device,
|
|
)
|
|
if cache_seqlens[i].item() > 0
|
|
else torch.zeros(1, dtype=torch.int32, device=device)
|
|
)
|
|
for i in range(batch_size)
|
|
]
|
|
)
|
|
else:
|
|
cache_leftpad = None
|
|
if has_batch_idx:
|
|
cache_batch_idx = torch.randperm(
|
|
batch_size_cache, dtype=torch.int32, device=device
|
|
)[:batch_size]
|
|
else:
|
|
cache_batch_idx = None
|
|
arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
|
|
cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
|
|
if not new_kv:
|
|
key_padding_mask = arange < cache_seqlens_expanded
|
|
else:
|
|
k_new_seqlens = (
|
|
key_new_padding_mask.sum(-1, keepdims=True) if varlen_q else seqlen_new
|
|
)
|
|
key_padding_mask = arange < cache_seqlens_expanded + k_new_seqlens
|
|
if has_leftpad:
|
|
key_padding_mask = torch.logical_and(
|
|
key_padding_mask,
|
|
arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k),
|
|
)
|
|
# cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
|
|
rotary_seqlens = cache_seqlens if not has_rotary_seqlens else cache_seqlens // 2
|
|
if rotary_dim > 0:
|
|
angle = (
|
|
torch.rand(
|
|
seqlen_k if page_size is None else num_blocks * page_size,
|
|
rotary_dim // 2,
|
|
device=device,
|
|
)
|
|
* 2
|
|
* math.pi
|
|
)
|
|
cos = torch.cos(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
|
|
sin = torch.sin(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
|
|
if causal or local:
|
|
q_ro = apply_rotary_emb(
|
|
q,
|
|
cos,
|
|
sin,
|
|
seqlen_offsets=rotary_seqlens,
|
|
interleaved=rotary_interleaved,
|
|
)
|
|
else:
|
|
q_ro = rearrange(
|
|
apply_rotary_emb(
|
|
rearrange(q, "b s h d -> b 1 (s h) d"),
|
|
cos,
|
|
sin,
|
|
seqlen_offsets=rotary_seqlens,
|
|
interleaved=rotary_interleaved,
|
|
),
|
|
"b 1 (s h) d -> b s h d",
|
|
s=seqlen_q,
|
|
)
|
|
# q_ro = q
|
|
k_ro = apply_rotary_emb(
|
|
k,
|
|
cos,
|
|
sin,
|
|
seqlen_offsets=rotary_seqlens,
|
|
interleaved=rotary_interleaved,
|
|
)
|
|
else:
|
|
cos, sin = None, None
|
|
q_ro, k_ro = q, k
|
|
# k_cache[:, 64:] = -1
|
|
k_cache_ref = (
|
|
k_cache if not has_batch_idx else k_cache[cache_batch_idx]
|
|
).clone()
|
|
v_cache_ref = (
|
|
v_cache if not has_batch_idx else v_cache[cache_batch_idx]
|
|
).clone()
|
|
if new_kv:
|
|
update_mask = torch.logical_and(
|
|
cache_seqlens_expanded <= arange,
|
|
arange < cache_seqlens_expanded + k_new_seqlens,
|
|
)
|
|
k_to_update = rearrange(k_ro, "b s ... -> (b s) ...")
|
|
v_to_update = rearrange(v, "b s ... -> (b s) ...")
|
|
if varlen_q:
|
|
k_to_update = k_to_update[indices_k]
|
|
v_to_update = v_to_update[indices_k]
|
|
k_cache_ref[update_mask] = k_to_update
|
|
v_cache_ref[update_mask] = v_to_update
|
|
k_cache_rep = repeat(
|
|
k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k
|
|
)
|
|
v_cache_rep = repeat(
|
|
v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k
|
|
)
|
|
out_ref, _ = attention_ref(
|
|
q_ro,
|
|
k_cache_rep,
|
|
v_cache_rep,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
causal=causal,
|
|
qv=qv,
|
|
window_size=window_size,
|
|
key_leftpad=cache_leftpad,
|
|
sinks=sinks,
|
|
)
|
|
out_pt, _ = attention_ref(
|
|
q_ro,
|
|
k_cache_rep,
|
|
v_cache_rep,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
causal=causal,
|
|
qv=qv,
|
|
window_size=window_size,
|
|
upcast=False,
|
|
reorder_ops=True,
|
|
key_leftpad=cache_leftpad,
|
|
intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
|
|
sinks=sinks,
|
|
)
|
|
q = q.to(dtype)
|
|
q_unpad = q_unpad.to(dtype) if varlen_q else None
|
|
k_cache = k_cache.to(dtype)
|
|
v_cache = v_cache.to(dtype)
|
|
k_cache_paged = k_cache_paged.to(dtype) if page_size is not None else None
|
|
v_cache_paged = v_cache_paged.to(dtype) if page_size is not None else None
|
|
k = k.to(dtype) if k is not None else None
|
|
v = v.to(dtype) if v is not None else None
|
|
k_unpad = k_unpad.to(dtype) if k_unpad is not None else None
|
|
v_unpad = v_unpad.to(dtype) if v_unpad is not None else None
|
|
qv = qv.to(dtype) if qv is not None else None
|
|
qv_unpad = qv_unpad.to(dtype) if (varlen_q and qv is not None) else None
|
|
cos = cos.to(dtype) if cos is not None else None
|
|
sin = sin.to(dtype) if sin is not None else None
|
|
k_cache_saved = k_cache.clone() if page_size is None else k_cache_paged.clone()
|
|
v_cache_saved = v_cache.clone() if page_size is None else v_cache_paged.clone()
|
|
num_splits_vals = [1, 0] if not DISABLE_SPLIT else [1]
|
|
precompute_metadata_vals = [False]
|
|
for num_splits, precompute_metadata in itertools.product(
|
|
num_splits_vals, precompute_metadata_vals
|
|
):
|
|
scheduler_metadata = None
|
|
# Repeat to test metadata reuse
|
|
for _ in range(1 if not precompute_metadata else 2):
|
|
if page_size is None:
|
|
k_cache.copy_(k_cache_saved)
|
|
v_cache.copy_(v_cache_saved)
|
|
else:
|
|
k_cache_paged.copy_(k_cache_saved)
|
|
v_cache_paged.copy_(v_cache_saved)
|
|
out, lse, *rest = flash_attn_with_kvcache(
|
|
q if not varlen_q else q_unpad,
|
|
k_cache if page_size is None else k_cache_paged,
|
|
v_cache if page_size is None else v_cache_paged,
|
|
k if not new_kv or not varlen_q else k_unpad,
|
|
v if not new_kv or not varlen_q else v_unpad,
|
|
qv=qv if not varlen_q else qv_unpad,
|
|
rotary_cos=cos,
|
|
rotary_sin=sin,
|
|
cache_seqlens=cache_seqlens,
|
|
cache_batch_idx=cache_batch_idx,
|
|
cache_leftpad=cache_leftpad,
|
|
page_table=page_table,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k_new=cu_seqlens_k_new,
|
|
max_seqlen_q=max_seqlen_q,
|
|
rotary_seqlens=rotary_seqlens,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
rotary_interleaved=rotary_interleaved,
|
|
scheduler_metadata=scheduler_metadata,
|
|
num_splits=num_splits,
|
|
return_softmax_lse=True,
|
|
sinks=sinks,
|
|
)
|
|
if varlen_q:
|
|
out = output_pad_fn(out)
|
|
# out = flash_attn_with_kvcache(
|
|
# q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
|
|
# )
|
|
# out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
|
|
# qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
|
|
# m = qk.amax(-1, keepdim=True)
|
|
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
|
|
# o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
|
|
# lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
|
|
# probs = torch.softmax(qk, dim=-1)
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
# breakpoint()
|
|
|
|
# Check that FlashAttention's numerical error is at most twice the numerical error
|
|
# of a Pytorch implementation.
|
|
if new_kv:
|
|
if page_size is None:
|
|
k_cache_select = (
|
|
k_cache.to(dtype_ref)
|
|
if not has_batch_idx
|
|
else k_cache.to(dtype_ref)[cache_batch_idx]
|
|
)
|
|
v_cache_select = (
|
|
v_cache.to(dtype_ref)
|
|
if not has_batch_idx
|
|
else v_cache.to(dtype_ref)[cache_batch_idx]
|
|
)
|
|
else:
|
|
k_cache_select = rearrange(
|
|
k_cache_paged.to(dtype_ref)[
|
|
(
|
|
page_table
|
|
if not has_batch_idx
|
|
else page_table[cache_batch_idx]
|
|
).flatten()
|
|
],
|
|
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
|
|
b=batch_size,
|
|
)[:, :seqlen_k].to(dtype_ref)
|
|
v_cache_select = rearrange(
|
|
v_cache_paged.to(dtype_ref)[
|
|
(
|
|
page_table
|
|
if not has_batch_idx
|
|
else page_table[cache_batch_idx]
|
|
).flatten()
|
|
],
|
|
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
|
|
b=batch_size,
|
|
)[:, :seqlen_k].to(dtype_ref)
|
|
k_cache_ref = k_cache_ref.to(dtype).to(dtype_ref)
|
|
v_cache_ref = v_cache_ref.to(dtype).to(dtype_ref)
|
|
if dtype is not torch.float8_e4m3fn:
|
|
assert torch.equal(v_cache_select, v_cache_ref)
|
|
else:
|
|
assert torch.allclose(
|
|
v_cache_select, v_cache_ref, rtol=1e-3, atol=1e-3
|
|
)
|
|
# breakpoint()
|
|
# if rotary_dim == 0 and dtype is not torch.float8_e4m3fn:
|
|
if rotary_dim == 0:
|
|
assert torch.equal(k_cache_select, k_cache_ref)
|
|
else:
|
|
# if not torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3):
|
|
# breakpoint()
|
|
if dtype is not torch.float8_e4m3fn:
|
|
assert torch.allclose(
|
|
k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3
|
|
)
|
|
else:
|
|
assert torch.allclose(
|
|
k_cache_select, k_cache_ref, rtol=1e-1, atol=1e-1
|
|
)
|
|
mult = 4 if dtype == torch.float8_e4m3fn else 2
|
|
assert (out - out_ref).abs().max().item() <= mult * (
|
|
out_pt - out_ref
|
|
).abs().max().item() + 1e-5
|
|
mult_mean = 3 if dtype == torch.float8_e4m3fn else 1.5
|
|
assert (out - out_ref).abs().mean().item() <= mult_mean * (
|
|
out_pt - out_ref
|
|
).abs().mean().item()
|
|
|
|
|
|
def _generate_block_kvcache(
|
|
seqlen_k, page_size, batch_size, nheads_k, d, dv, device, dtype, dtype_ref
|
|
):
|
|
num_blocks = math.ceil(seqlen_k / page_size) * batch_size * 3
|
|
k_cache_paged = (
|
|
torch.randn(num_blocks, page_size, nheads_k, d, device=device, dtype=dtype_ref)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
v_cache_paged = (
|
|
torch.randn(num_blocks, page_size, nheads_k, dv, device=device, dtype=dtype_ref)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
page_table = rearrange(
|
|
torch.randperm(num_blocks, dtype=torch.int32, device=device),
|
|
"(b nblocks) -> b nblocks",
|
|
b=batch_size,
|
|
)
|
|
k_cache = rearrange(
|
|
k_cache_paged[page_table.flatten()],
|
|
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
|
|
b=batch_size,
|
|
)[:, :seqlen_k]
|
|
v_cache = rearrange(
|
|
v_cache_paged[page_table.flatten()],
|
|
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
|
|
b=batch_size,
|
|
)[:, :seqlen_k]
|
|
return k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not is_fa3_supported(),
|
|
reason="flash_attn at sgl-kernel is only supported on sm90 or sm80",
|
|
)
|
|
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
|
|
@pytest.mark.parametrize(
|
|
"dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else [])
|
|
)
|
|
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
|
|
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
|
|
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
|
|
# @pytest.mark.parametrize("mha_type", ["mha"])
|
|
@pytest.mark.parametrize("has_sink", [False, True])
|
|
# @pytest.mark.parametrize("has_sink", [False])
|
|
# @pytest.mark.parametrize("has_qv", [False, True])
|
|
@pytest.mark.parametrize("has_qv", [False])
|
|
# @pytest.mark.parametrize("deterministic", [False, True])
|
|
@pytest.mark.parametrize("deterministic", [False])
|
|
@pytest.mark.parametrize("softcap", [0.0] + ([15.0] if not DISABLE_SOFTCAP else []))
|
|
# @pytest.mark.parametrize("softcap", [0.0])
|
|
@pytest.mark.parametrize("local", [False])
|
|
# @pytest.mark.parametrize("local", [False])
|
|
@pytest.mark.parametrize("causal", [False, True])
|
|
# @pytest.mark.parametrize("causal", [False])
|
|
@pytest.mark.parametrize("add_unused_qkv", [False, True])
|
|
# @pytest.mark.parametrize("add_unused_qkv", [True])
|
|
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
|
|
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
|
|
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
|
|
# @pytest.mark.parametrize('d', [56, 80])
|
|
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
|
|
# @pytest.mark.parametrize("d", [64, 96, 128])
|
|
# @pytest.mark.parametrize("d", COMPILED_HDIMS)
|
|
@pytest.mark.parametrize("d", [128])
|
|
@pytest.mark.parametrize(
|
|
"seqlen_q,seqlen_k",
|
|
[
|
|
(1, 1),
|
|
(1, 3),
|
|
(2, 1),
|
|
(511, 1),
|
|
(3, 513),
|
|
(64, 128),
|
|
(128, 128),
|
|
(256, 256),
|
|
(113, 203),
|
|
(128, 217),
|
|
(113, 211),
|
|
(108, 256),
|
|
(256, 512),
|
|
(307, 256),
|
|
(640, 128),
|
|
(512, 256),
|
|
(1024, 1024),
|
|
(1023, 1024),
|
|
(1024, 1023),
|
|
(2048, 2048),
|
|
],
|
|
)
|
|
def test_flash_attn_varlen_output(
|
|
seqlen_q,
|
|
seqlen_k,
|
|
d,
|
|
add_unused_qkv,
|
|
causal,
|
|
local,
|
|
softcap,
|
|
deterministic,
|
|
has_qv,
|
|
mha_type,
|
|
dtype,
|
|
has_sink,
|
|
):
|
|
from sgl_kernel.flash_attn import flash_attn_varlen_func
|
|
|
|
device = "cuda"
|
|
# set seed
|
|
torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local))
|
|
# batch_size = 40
|
|
# nheads = 16
|
|
batch_size = 9 if seqlen_q <= 2048 else 2
|
|
nheads = 6
|
|
# batch_size = 2
|
|
# nheads = 1
|
|
nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
|
|
dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
|
|
dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
|
|
if dtype == torch.float8_e4m3fn:
|
|
dv_vals = [d]
|
|
for dv in dv_vals:
|
|
q_ref = torch.randn(
|
|
batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref
|
|
)
|
|
if softcap > 0.0:
|
|
# Ensure the values of qk are at least within softcap range.
|
|
q_ref = (q_ref * softcap / 4).detach().requires_grad_()
|
|
q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
|
|
k_ref = (
|
|
torch.randn(
|
|
batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
.requires_grad_()
|
|
)
|
|
v_ref = (
|
|
torch.randn(
|
|
batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
.requires_grad_()
|
|
)
|
|
if has_qv:
|
|
qv_ref = (
|
|
torch.randn(
|
|
batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref
|
|
)
|
|
.to(dtype)
|
|
.to(dtype_ref)
|
|
)
|
|
else:
|
|
qv_ref = None
|
|
# Put window_size after QKV randn so that window_size changes from test to test
|
|
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
|
|
|
|
if has_sink:
|
|
sinks = torch.randn(nheads, dtype=torch.bfloat16, device=device)
|
|
else:
|
|
sinks = None
|
|
|
|
if dtype == torch.float8_e4m3fn:
|
|
q_descale, k_descale, v_descale = [
|
|
torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32)
|
|
* 2
|
|
for _ in range(3)
|
|
]
|
|
else:
|
|
q_descale, k_descale, v_descale = None, None, None
|
|
q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)]
|
|
qv = qv_ref.detach() if has_qv else None
|
|
query_padding_mask = generate_random_padding_mask(
|
|
seqlen_q, batch_size, device, mode="random", zero_lengths=False
|
|
)
|
|
key_padding_mask = generate_random_padding_mask(
|
|
seqlen_k, batch_size, device, mode="random", zero_lengths=True
|
|
)
|
|
|
|
def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
|
|
if add_unused:
|
|
another_mask = generate_random_padding_mask(max_seq_len, bs, device)
|
|
attn_mask = torch.logical_and(padding_mask, another_mask)
|
|
unused_mask = torch.logical_xor(
|
|
torch.logical_or(padding_mask, another_mask), attn_mask
|
|
)
|
|
else:
|
|
attn_mask = padding_mask
|
|
unused_mask = None
|
|
return attn_mask, unused_mask
|
|
|
|
query_padding_mask, query_unused_mask = _gen_unused_masks(
|
|
query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device
|
|
)
|
|
key_padding_mask, key_unused_mask = _gen_unused_masks(
|
|
key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device
|
|
)
|
|
|
|
(
|
|
q_unpad,
|
|
k_unpad,
|
|
v_unpad,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
seqused_q,
|
|
seqused_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
q,
|
|
k,
|
|
v,
|
|
output_pad_fn,
|
|
dq_pad_fn,
|
|
dk_pad_fn,
|
|
) = generate_qkv(
|
|
q,
|
|
k,
|
|
v,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
kvpacked=False,
|
|
query_unused_mask=query_unused_mask,
|
|
key_unused_mask=key_unused_mask,
|
|
)
|
|
q_unpad, k_unpad, v_unpad = [
|
|
x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad)
|
|
]
|
|
out_ref, attn_ref = attention_ref(
|
|
q_ref,
|
|
k_ref,
|
|
v_ref,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
causal=causal,
|
|
qv=qv_ref,
|
|
q_descale=q_descale,
|
|
k_descale=k_descale,
|
|
v_descale=v_descale,
|
|
window_size=window_size,
|
|
softcap=softcap,
|
|
sinks=sinks,
|
|
)
|
|
out_pt, attn_pt = attention_ref(
|
|
q_ref,
|
|
k_ref,
|
|
v_ref,
|
|
query_padding_mask,
|
|
key_padding_mask,
|
|
causal=causal,
|
|
qv=qv_ref,
|
|
q_descale=q_descale,
|
|
k_descale=k_descale,
|
|
v_descale=v_descale,
|
|
window_size=window_size,
|
|
softcap=softcap,
|
|
upcast=False,
|
|
reorder_ops=True,
|
|
intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
|
|
sinks=sinks,
|
|
)
|
|
|
|
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
|
|
if query_unused_mask is not None:
|
|
q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1")
|
|
|
|
# Numerical error if we just do any arithmetic on out_ref
|
|
fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item()
|
|
rtol = 2 if softcap == 0.0 else 3
|
|
|
|
pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False]
|
|
num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1]
|
|
for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals):
|
|
out_unpad, lse, *rest = flash_attn_varlen_func(
|
|
q_unpad,
|
|
k_unpad,
|
|
v_unpad,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
max_seqlen_q,
|
|
max_seqlen_k,
|
|
seqused_q=seqused_q,
|
|
seqused_k=seqused_k,
|
|
causal=causal,
|
|
q_descale=q_descale,
|
|
k_descale=k_descale,
|
|
v_descale=v_descale,
|
|
window_size=window_size,
|
|
softcap=softcap,
|
|
return_softmax_lse=True,
|
|
sinks=sinks,
|
|
)
|
|
out = output_pad_fn(out_unpad)
|
|
if query_unused_mask is not None:
|
|
out.masked_fill_(q_zero_masking, 0.0)
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
|
# Check that FlashAttention's numerical error is at most 3x the numerical error
|
|
# of a Pytorch implementation.
|
|
assert (out - out_ref).abs().max().item() <= rtol * (
|
|
out_pt - out_ref
|
|
).abs().max().item() + fwd_atol
|
|
|
|
if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not has_qv:
|
|
g_unpad = torch.randn_like(out_unpad)
|
|
do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2)
|
|
dq_unpad, dk_unpad, dv_unpad = torch.autograd.grad(
|
|
out_unpad, (q_unpad, k_unpad, v_unpad), g_unpad
|
|
)
|
|
dq = dq_pad_fn(dq_unpad)
|
|
dk = dk_pad_fn(dk_unpad)
|
|
dv = dk_pad_fn(dv_unpad)
|
|
if key_unused_mask is not None:
|
|
k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1")
|
|
dk.masked_fill_(k_zero_masking, 0.0)
|
|
dv.masked_fill_(k_zero_masking, 0.0)
|
|
if query_unused_mask is not None:
|
|
dq.masked_fill_(q_zero_masking, 0.0)
|
|
# print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
|
|
# assert (softmax_d - do_o).abs().max().item() <= 1e-5
|
|
# assert dq_accum.abs().max().item() == 0.0
|
|
g = output_pad_fn(g_unpad)
|
|
|
|
# dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
|
|
dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g)
|
|
dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
|
|
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
|
|
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
|
|
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
|
|
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
|
|
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
|
|
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
|
|
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
|
|
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
|
|
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
|
|
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
|
|
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
|
|
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
|
|
|
|
if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not has_qv:
|
|
dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + (
|
|
0 if softcap == 0 else 3e-4
|
|
)
|
|
assert (dq - dq_ref).abs().max().item() <= rtol * (
|
|
dq_pt - dq_ref
|
|
).abs().max().item() + dq_atol
|
|
dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + (
|
|
0 if softcap == 0 else 3e-4
|
|
)
|
|
assert (dk - dk_ref).abs().max().item() <= rtol * (
|
|
dk_pt - dk_ref
|
|
).abs().max().item() + dk_atol
|
|
dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + (
|
|
0 if softcap == 0 else 3e-4
|
|
)
|
|
assert (dv - dv_ref).abs().max().item() <= rtol * (
|
|
dv_pt - dv_ref
|
|
).abs().max().item() + dv_atol
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|