sglang_v0.5.2/sglang/sgl-kernel/tests/test_merge_state_v2.py

401 lines
13 KiB
Python

from typing import Optional
import pytest
import torch
import triton
import triton.language as tl
from sgl_kernel import merge_state, merge_state_v2
@triton.jit
def merge_state_kernel(
output, # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE] v_merged
output_lse, # [NUM_TOKENS, NUM_HEADS] s_merged
prefix_output, # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE] v_a
prefix_lse, # [NUM_TOKENS, NUM_HEADS] s_a
suffix_output, # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE] v_b
suffix_lse, # [NUM_TOKENS, NUM_HEADS] s_b
HEAD_SIZE: tl.constexpr,
PADDED_HEAD_SIZE: tl.constexpr,
OUTPUT_LSE: tl.constexpr,
):
token_idx = tl.program_id(0)
num_tokens = tl.num_programs(0)
head_idx = tl.program_id(1)
num_heads = tl.num_programs(1)
p_lse = tl.load(prefix_lse + token_idx * num_heads + head_idx)
s_lse = tl.load(suffix_lse + token_idx * num_heads + head_idx)
p_lse = float("-inf") if p_lse == float("inf") else p_lse
s_lse = float("-inf") if s_lse == float("inf") else s_lse
max_lse = tl.maximum(p_lse, s_lse)
p_lse = p_lse - max_lse
s_lse = s_lse - max_lse
out_se = tl.exp(p_lse) + tl.exp(s_lse)
if OUTPUT_LSE:
out_lse = tl.log(out_se) + max_lse
tl.store(output_lse + token_idx * num_heads + head_idx, out_lse)
head_arange = tl.arange(0, PADDED_HEAD_SIZE)
head_mask = head_arange < HEAD_SIZE
p_out = tl.load(
prefix_output
+ token_idx * num_heads * HEAD_SIZE
+ head_idx * HEAD_SIZE
+ head_arange,
mask=head_mask,
)
s_out = tl.load(
suffix_output
+ token_idx * num_heads * HEAD_SIZE
+ head_idx * HEAD_SIZE
+ head_arange,
mask=head_mask,
)
p_scale = tl.exp(p_lse) / out_se
s_scale = tl.exp(s_lse) / out_se
out = p_out * p_scale + s_out * s_scale
tl.store(
output + token_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE + head_arange,
out,
mask=head_mask,
)
def merge_state_triton(
prefix_output: torch.Tensor,
prefix_lse: torch.Tensor,
suffix_output: torch.Tensor,
suffix_lse: torch.Tensor,
output: Optional[torch.Tensor] = None,
output_lse: Optional[torch.Tensor] = None,
) -> None:
num_tokens = output.shape[0]
num_query_heads = output.shape[1]
head_size = output.shape[2]
padded_head_size = triton.next_power_of_2(head_size)
# Avoid creating new tensors if they are already provided
if output is None:
output = torch.empty_like(prefix_output)
if output_lse is None:
output_lse = torch.empty_like(prefix_lse)
merge_state_kernel[(num_tokens, num_query_heads)](
output,
output_lse,
prefix_output,
prefix_lse,
suffix_output,
suffix_lse,
head_size,
padded_head_size,
output_lse is not None,
)
return output, output_lse
# Naive PyTorch Implements of Merge Attn States
def merge_state_torch(
prefix_output: torch.Tensor, # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE]
prefix_lse: torch.Tensor, # [NUM_TOKENS, NUM_HEADS]
suffix_output: torch.Tensor, # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE]
suffix_lse: torch.Tensor, # [NUM_TOKENS, NUM_HEADS]
output: Optional[torch.Tensor] = None, # [NUM_TOKENS, NUM_HEADS, HEAD_SIZE]
output_lse: Optional[torch.Tensor] = None, # [NUM_TOKENS, NUM_HEADS]
):
# Avoid creating new tensors if they are already provided
if output is None:
output = torch.empty_like(prefix_output)
if output_lse is None:
output_lse = torch.empty_like(prefix_lse)
p_lse = prefix_lse
s_lse = suffix_lse
# inf -> -inf
p_lse[p_lse == torch.inf] = -torch.inf
s_lse[s_lse == torch.inf] = -torch.inf
# max_lse [NUM_HEADS, NUM_TOKENS]
max_lse = torch.maximum(p_lse, s_lse)
p_lse = p_lse - max_lse
s_lse = s_lse - max_lse
p_lse_exp = torch.exp(p_lse)
s_lse_exp = torch.exp(s_lse)
out_se = p_lse_exp + s_lse_exp
if output_lse is not None:
output_lse = torch.log(out_se) + max_lse
p_scale = p_lse_exp / out_se
s_scale = s_lse_exp / out_se
p_scale = p_scale.unsqueeze(2) # [NUM_TOKENS, NUM_HEADS, 1]
s_scale = s_scale.unsqueeze(2) # [NUM_TOKENS, NUM_HEADS, 1]
output = prefix_output * p_scale + suffix_output * s_scale
return output, output_lse
NUM_BATCH_TOKENS = [256, 512, 613, 1024, 1536]
NUM_QUERY_HEADS = [8, 16, 32]
HEAD_SIZES = [32, 48, 64, 128, 256]
DTYPES = [torch.half, torch.bfloat16]
all_case_info: list[tuple] = []
def generate_markdown_table():
global all_case_info
table_header = (
"| tokens | heads | headsize | dtype "
"| device | torch | triton | v1 | v2 | speedup(vs triton) | speedup(vs v1)|"
)
table_separator = (
"| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |"
)
def shortly_dtype(dtype: torch.dtype) -> str:
return str(dtype).removeprefix("torch.")
def shortly_device(device: str) -> str:
return device.removeprefix("NVIDIA").strip()
print(table_header)
print(table_separator)
for info in all_case_info:
(
num_tokens,
num_heads,
head_size,
dtype,
device,
time_torch,
time_triton,
time_v1,
time_v2,
) = info
dtype = shortly_dtype(dtype)
device = shortly_device(device)
improved_triton = time_triton / time_v2
improved_v1 = time_v1 / time_v2
print(
f"| {num_tokens} | {num_heads} | {head_size} "
f"| {dtype} | {device} | {time_torch:.4f}ms "
f"| {time_triton:.4f}ms "
f"| {time_v1:.4f}ms "
f"| {time_v2:.4f}ms "
f"| {improved_triton:.4f}x "
f"| {improved_v1:.4f}x |"
)
@pytest.mark.parametrize("num_tokens", NUM_BATCH_TOKENS)
@pytest.mark.parametrize("num_query_heads", NUM_QUERY_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("output_dtype", DTYPES)
@torch.inference_mode()
def test_merge_attn_states(
num_tokens: int, num_query_heads: int, head_size: int, output_dtype: torch.dtype
):
if not torch.cuda.is_available():
pytest.skip(
"Currently only support compare triton merge_attn_states "
"with custom cuda merge_attn_states kernel"
)
NUM_TOKENS = num_tokens
NUM_HEADS = num_query_heads
HEAD_SIZE = head_size
print(
f"\nNUM_TOKENS:{NUM_TOKENS}, NUM_HEADS:{NUM_HEADS}, "
f"HEAD_SIZE:{HEAD_SIZE}, DTYPE: {output_dtype}, "
f"Device: {torch.cuda.get_device_name()}"
)
# prefix_lse and suffix_lse contain inf and normal values
prefix_lse = torch.randn(NUM_TOKENS, NUM_HEADS, dtype=torch.float32, device="cuda")
suffix_lse = torch.randn(NUM_TOKENS, NUM_HEADS, dtype=torch.float32, device="cuda")
# Generate boolean masks
mask_prefix = torch.rand(NUM_TOKENS, NUM_HEADS) < 0.1
mask_suffix = torch.rand(NUM_TOKENS, NUM_HEADS) < 0.1
# Ensure that the same position is not True at the same time
combined_mask = torch.logical_and(mask_prefix, mask_suffix)
mask_prefix = torch.logical_and(mask_prefix, ~combined_mask)
mask_suffix = torch.logical_and(mask_suffix, ~combined_mask)
prefix_lse[mask_prefix] = float("inf")
suffix_lse[mask_suffix] = float("inf")
# Other input tensors (need to be initialized but
# no actual calculation needed)
output = torch.zeros(
(NUM_TOKENS, NUM_HEADS, HEAD_SIZE), dtype=output_dtype, device="cuda"
)
output_lse = torch.zeros(
(NUM_TOKENS, NUM_HEADS), dtype=torch.float32, device="cuda"
)
prefix_output = torch.randn(
(NUM_TOKENS, NUM_HEADS, HEAD_SIZE), dtype=output_dtype, device="cuda"
)
suffix_output = torch.randn(
(NUM_TOKENS, NUM_HEADS, HEAD_SIZE), dtype=output_dtype, device="cuda"
)
warmup_times = 2
repeat_times = 20
def perf_kernel_fn(
output_fn: torch.Tensor,
output_lse_fn: torch.Tensor,
kernel_fn: callable,
fn_type: str = "torch",
):
# Avoid inplace inf -> -inf, we have to use prefix_lse
# and suffix_lse for other kernel.
if fn_type == "torch":
prefix_lse_ = prefix_lse.clone()
suffix_lse_ = suffix_lse.clone()
else:
prefix_lse_ = prefix_lse
suffix_lse_ = suffix_lse
if fn_type == "cuda_v1":
# merge_state v1 kernel not support float32
if output_dtype not in (torch.half, torch.bfloat16):
return 0, output_fn, output_lse_fn
total_time = 0
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
try:
for _ in range(warmup_times):
output_fn, output_lse_fn = kernel_fn(
prefix_output,
prefix_lse_,
suffix_output,
suffix_lse_,
output_fn,
output_lse_fn,
)
torch.cuda.synchronize()
for _ in range(repeat_times):
start.record()
output_fn, output_lse_fn = kernel_fn(
prefix_output,
prefix_lse_,
suffix_output,
suffix_lse_,
output_fn,
output_lse_fn,
)
end.record()
torch.cuda.synchronize()
total_time += start.elapsed_time(end)
avg_time = total_time / repeat_times
return avg_time, output_fn, output_lse_fn
except Exception as e:
return 0, output_fn, output_lse_fn
# 0. Run the Torch kernel
output_torch = output.clone()
output_lse_torch = output_lse.clone()
time_torch, output_torch, output_lse_torch = perf_kernel_fn(
output_torch, output_lse_torch, merge_state_torch, fn_type="torch"
)
# 1. Run the Triton kernel
output_ref_triton = output.clone()
output_lse_ref_triton = output_lse.clone()
time_triton, output_ref_triton, output_lse_ref_triton = perf_kernel_fn(
output_ref_triton,
output_lse_ref_triton,
merge_state_triton,
fn_type="triton",
)
# 2. Run the merge_state V1 kernel
output_v1 = output.clone()
output_lse_v1 = output_lse.clone()
time_v1, output_v1, output_lse_v1 = perf_kernel_fn(
output_v1, output_lse_v1, merge_state, fn_type="cuda_v1"
)
# 3. Run the merge_state V2 kernel
output_v2 = output.clone()
output_lse_v2 = output_lse.clone()
time_v2, output_v2, output_lse_v2 = perf_kernel_fn(
output_v2, output_lse_v2, merge_state_v2, fn_type="cuda_v2"
)
# 4. Performance compare
improved = time_triton / time_v2
print(f" Torch time: {time_torch:.6f}ms")
print(f" Triton time: {time_triton:.6f}ms")
print(f"CUDA v1 time: {time_v1:.6f}ms")
print(f"CUDA v2 time: {time_v2:.6f}ms, Performance: {improved:.5f}x")
print("-" * 100)
# 5. Correctness compare
# Liger Kernel: Efficient Triton Kernels for LLM Training
# https://arxiv.org/pdf/2410.10989, 3.3 Correctness
# use rtol = 1e-2 for bfloat16.
rtol = 1e-2 if output_dtype == torch.bfloat16 else 1e-3
def diff(a: torch.Tensor, b: torch.Tensor):
max_diff = torch.max(torch.abs(a.float() - b.float()))
return max_diff
# Use Triton output as reference because we want to replace
# the Triton kernel with custom CUDA kernel for merge attn
# states operation.
output_ref = output_ref_triton
output_lse_ref = output_lse_ref_triton
torch.testing.assert_close(
output_v2.float(), output_ref.float(), atol=1e-3, rtol=rtol
)
print("Output all match, max abs diff:")
print(f"(Triton vs Torch) : {diff(output_torch, output_ref)}")
print(f"(CUDA v2 vs Torch) : {diff(output_torch, output_v2)}")
print(f"(CUDA v2 vs Triton): {diff(output_ref, output_v2)}")
print("-" * 100)
torch.testing.assert_close(
output_lse_v2.float(), output_lse_ref.float(), atol=1e-3, rtol=rtol
)
print("Output LSE all match, max abs diff:")
print(f"(Triton vs Torch) : {diff(output_lse_torch, output_lse_ref)}")
print(f"(CUDA v2 vs Torch) : {diff(output_lse_torch, output_lse_v2)}")
print(f"(CUDA v2 vs Triton): {diff(output_lse_ref, output_lse_v2)}")
print("-" * 100)
print(
"All output values test passed! All inf values "
"are correctly replaced with -inf."
)
print("-" * 100)
device = torch.cuda.get_device_name()
all_case_info.append(
(
NUM_TOKENS,
NUM_HEADS,
HEAD_SIZE,
output_dtype,
device,
time_torch,
time_triton,
time_v1,
time_v2,
)
)
if len(all_case_info) == (
len(NUM_BATCH_TOKENS) * len(HEAD_SIZES) * len(NUM_QUERY_HEADS) * len(DTYPES)
):
generate_markdown_table()
if __name__ == "__main__":
pytest.main([__file__])