58 lines
1.6 KiB
Python
58 lines
1.6 KiB
Python
import itertools
|
|
from typing import Optional, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
from sgl_kernel import sgl_per_token_quant_fp8
|
|
|
|
from sglang.srt.utils import is_hip
|
|
|
|
_is_hip = is_hip()
|
|
fp8_type_ = torch.float8_e4m3fnuz if _is_hip else torch.float8_e4m3fn
|
|
|
|
|
|
def torch_per_token_quant_fp8(tensor, inv_scale):
|
|
# The reference implementation that fully aligns to
|
|
# the kernel being tested.
|
|
finfo = torch.finfo(torch.float8_e4m3fn)
|
|
inv_scale = inv_scale.view(-1, 1)
|
|
scale = inv_scale.reciprocal()
|
|
qweight = (tensor.to(torch.float32) * scale).clamp(min=finfo.min, max=finfo.max)
|
|
qweight = qweight.to(torch.float8_e4m3fn)
|
|
return qweight
|
|
|
|
|
|
def sglang_per_token_quant_fp8(
|
|
input: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
scale = torch.zeros(input.size(0), device=input.device, dtype=torch.float32)
|
|
output = torch.empty_like(input, device=input.device, dtype=fp8_type_)
|
|
|
|
sgl_per_token_quant_fp8(input, output, scale)
|
|
scale = scale.reshape(-1, 1)
|
|
|
|
return output, scale
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"num_tokens,hidden_dim",
|
|
list(itertools.product([128, 256, 512], [512, 1368, 2048, 4096])),
|
|
)
|
|
def test_per_token_quant_compare_implementations(
|
|
num_tokens: int,
|
|
hidden_dim: int,
|
|
):
|
|
device = torch.device("cuda")
|
|
x = torch.rand((num_tokens, hidden_dim), dtype=torch.float16, device=device)
|
|
|
|
sglang_out, sglang_scale = sglang_per_token_quant_fp8(x)
|
|
torch_out = torch_per_token_quant_fp8(x, sglang_scale)
|
|
|
|
torch.testing.assert_close(
|
|
sglang_out.float(), torch_out.float(), rtol=1e-3, atol=1e-3
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|