sglang_v0.5.2/sglang/test/srt/cpu/test_activation.py

56 lines
1.6 KiB
Python

import itertools
import unittest
import sgl_kernel
import torch
import torch.nn.functional as F
from utils import GeluAndMul, SiluAndMul, precision
from sglang.test.test_utils import CustomTestCase
torch.manual_seed(1234)
class TestActivation(CustomTestCase):
M = [128, 129, 257]
N = [22016, 22018]
dtype = [torch.float16, torch.bfloat16]
def _silu_and_mul_test(self, m, n, dtype):
x = torch.randn([m, n], dtype=dtype)
out = torch.ops.sgl_kernel.silu_and_mul_cpu(x)
ref_out = SiluAndMul(x)
atol = rtol = precision[ref_out.dtype]
torch.testing.assert_close(ref_out, out, atol=atol, rtol=rtol)
def _gelu_and_mul_test(self, m, n, dtype):
x = torch.randn([m, n], dtype=dtype)
out = torch.ops.sgl_kernel.gelu_and_mul_cpu(x)
ref_out = GeluAndMul(x, approximate="none")
atol = rtol = precision[ref_out.dtype]
torch.testing.assert_close(ref_out, out, atol=atol, rtol=rtol)
def _gelu_tanh_and_mul_test(self, m, n, dtype):
x = torch.randn([m, n], dtype=dtype)
out = torch.ops.sgl_kernel.gelu_tanh_and_mul_cpu(x)
ref_out = GeluAndMul(x, approximate="tanh")
atol = rtol = precision[ref_out.dtype]
torch.testing.assert_close(ref_out, out, atol=atol, rtol=rtol)
def test_activation(self):
for params in itertools.product(self.M, self.N, self.dtype):
with self.subTest(m=params[0], n=params[1], dtype=params[2]):
self._silu_and_mul_test(*params)
self._gelu_and_mul_test(*params)
self._gelu_tanh_and_mul_test(*params)
if __name__ == "__main__":
unittest.main()