sglang_v0.5.2/sglang/test/srt/cpu/test_mla.py

158 lines
4.8 KiB
Python

import itertools
import unittest
import sgl_kernel
import torch
from torch.nn.functional import scaled_dot_product_attention
from utils import precision
from sglang.test.test_utils import CustomTestCase
torch.manual_seed(1234)
class TestMLA(CustomTestCase):
def _run_sdpa_forward_decode(
self,
query: torch.Tensor,
output: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
key: torch.Tensor,
loc: torch.Tensor,
req_to_token: torch.Tensor,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
scaling=None,
enable_gqa=False,
causal=False,
):
# set kv cache
k_cache[loc] = key
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
query = query.movedim(0, query.dim() - 2)
start_q, start_kv = 0, 0
for seq_idx in range(seq_lens.shape[0]):
seq_len_q = 1
seq_len_kv = seq_lens[seq_idx]
end_q = start_q + seq_len_q
end_kv = start_kv + seq_len_kv
per_req_query = query[:, start_q:end_q, :]
# get key and value from cache. per_req_tokens contains the kv cache
# index for each token in the sequence.
req_pool_idx = req_pool_indices[seq_idx]
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_out = (
scaled_dot_product_attention(
per_req_query.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
enable_gqa=enable_gqa,
scale=scaling,
is_causal=causal,
)
.squeeze(0)
.movedim(query.dim() - 2, 0)
)
output[start_q:end_q, :, :] = per_req_out
start_q, start_kv = end_q, end_kv
return output
def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V, seq_len):
dtype = torch.bfloat16
total_tokens = B * seq_len
sm_scale = 1.0 / (D**0.5)
logit_cap = 0.0
num_kv_splits = 8
enable_gqa = H_Q != H_KV
# q represents the new token being generated, one per batch
q = torch.randn(B, H_Q, D, dtype=dtype)
# k_buffer and v_buffer represent all previous tokens
k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype)
v_buffer = k_buffer.narrow(2, 0, D_V)
key = torch.randn(B, H_KV, D, dtype=dtype)
value = key.narrow(2, 0, D_V)
# make sure no duplicates in loc
loc = torch.randperm(total_tokens)[:B].to(torch.int64)
k_buffer2 = k_buffer.clone()
v_buffer2 = k_buffer2.narrow(2, 0, D_V)
# o will have the same shape as q
o = torch.zeros(B, H_Q, D_V, dtype=dtype)
o_grouped = torch.zeros(B, H_Q, D_V, dtype=dtype)
req_to_token = torch.arange(total_tokens).reshape(B, seq_len).to(torch.int32)
b_req_idx = torch.arange(B).to(torch.int64)
b_seq_len = torch.full((B,), seq_len).to(torch.int64)
attn_logits = torch.empty(
(B, H_Q, num_kv_splits, D_V + 1),
dtype=torch.float32,
)
torch.ops.sgl_kernel.decode_attention_cpu(
q,
k_buffer2,
v_buffer2,
o,
key,
value,
loc,
attn_logits,
req_to_token,
b_req_idx,
b_seq_len,
sm_scale,
logit_cap,
)
self._run_sdpa_forward_decode(
q,
o_grouped,
k_buffer,
v_buffer,
key,
loc,
req_to_token,
b_req_idx,
b_seq_len,
scaling=sm_scale,
enable_gqa=enable_gqa,
)
cos_sim = torch.nn.functional.cosine_similarity(
o.flatten(), o_grouped.flatten(), dim=0
)
atol = rtol = precision[q.dtype]
self.assertGreater(cos_sim.item(), 0.99)
torch.testing.assert_close(o, o_grouped, atol=atol, rtol=rtol)
torch.testing.assert_close(k_buffer, k_buffer2, atol=atol, rtol=rtol)
torch.testing.assert_close(v_buffer, v_buffer2, atol=atol, rtol=rtol)
def test_grouped_decode_attention(self):
configs = [
(1, 22, 1, 576, 512, 8 * 111),
(4, 22, 1, 576, 512, 8 * 128),
(40, 22, 1, 576, 512, 8 * 133),
]
for B, H_Q, H_KV, D, D_V, seqlen in configs:
self._test_grouped_decode_attention_once(B, H_Q, H_KV, D, D_V, seqlen)
if __name__ == "__main__":
unittest.main()