76 lines
2.0 KiB
Python
76 lines
2.0 KiB
Python
import time
|
|
import unittest
|
|
from types import SimpleNamespace
|
|
|
|
import requests
|
|
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.few_shot_gsm8k import run_eval
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
popen_launch_server,
|
|
)
|
|
|
|
|
|
class TestW8A8(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = "neuralmagic/Meta-Llama-3-8B-Instruct-quantized.w8a8"
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=["--quantization", "w8a8_int8"],
|
|
)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def test_gsm8k(self):
|
|
args = SimpleNamespace(
|
|
num_shots=5,
|
|
data_path=None,
|
|
num_questions=200,
|
|
max_new_tokens=512,
|
|
parallel=128,
|
|
host="http://127.0.0.1",
|
|
port=int(self.base_url.split(":")[-1]),
|
|
)
|
|
metrics = run_eval(args)
|
|
print(metrics)
|
|
|
|
self.assertGreater(metrics["accuracy"], 0.69)
|
|
|
|
def run_decode(self, max_new_tokens):
|
|
response = requests.post(
|
|
self.base_url + "/generate",
|
|
json={
|
|
"text": "The capital of France is",
|
|
"sampling_params": {
|
|
"temperature": 0,
|
|
"max_new_tokens": max_new_tokens,
|
|
},
|
|
"ignore_eos": True,
|
|
},
|
|
)
|
|
return response.json()
|
|
|
|
def test_throughput(self):
|
|
max_tokens = 256
|
|
|
|
tic = time.perf_counter()
|
|
res = self.run_decode(max_tokens)
|
|
tok = time.perf_counter()
|
|
print(res["text"])
|
|
throughput = max_tokens / (tok - tic)
|
|
print(f"Throughput: {throughput} tokens/s")
|
|
assert throughput >= 140
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|