sglang_v0.5.2/sglang/test/srt/test_eagle_infer_a.py

324 lines
10 KiB
Python

import unittest
import requests
import torch
import sglang as sgl
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
DEFAULT_MODEL_NAME_FOR_TEST_MLA,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
is_in_ci,
popen_launch_server,
)
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
class TestEAGLEEngine(CustomTestCase):
BASE_CONFIG = {
"model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
"speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"speculative_algorithm": "EAGLE",
"speculative_num_steps": 5,
"speculative_eagle_topk": 4,
"speculative_num_draft_tokens": 8,
"mem_fraction_static": 0.7,
"cuda_graph_max_bs": 5,
}
NUM_CONFIGS = 2
def setUp(self):
self.prompt = "Today is a sunny day and I like"
self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
ref_engine = sgl.Engine(
model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1
)
self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
ref_engine.shutdown()
def test_correctness(self):
configs = [
# Basic config
self.BASE_CONFIG,
# Chunked prefill
{**self.BASE_CONFIG, "chunked_prefill_size": 4},
]
for i, config in enumerate(configs[: self.NUM_CONFIGS]):
with self.subTest(i=i):
print(f"{config=}")
engine = sgl.Engine(**config, log_level="info", decode_log_interval=10)
try:
self._test_single_generation(engine)
self._test_batch_generation(engine)
self._test_eos_token(engine)
self._test_acc_length(engine)
finally:
engine.shutdown()
print("=" * 100)
def _test_single_generation(self, engine):
output = engine.generate(self.prompt, self.sampling_params)["text"]
print(f"{output=}, {self.ref_output=}")
self.assertEqual(output, self.ref_output)
def _test_batch_generation(self, engine):
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
params = {"temperature": 0, "max_new_tokens": 50}
outputs = engine.generate(prompts, params)
for prompt, output in zip(prompts, outputs):
print(f"Prompt: {prompt}")
print(f"Generated: {output['text']}")
print("-" * 40)
print(f"{engine.get_server_info()=}")
avg_spec_accept_length = engine.get_server_info()["internal_states"][0][
"avg_spec_accept_length"
]
print(f"{avg_spec_accept_length=}")
self.assertGreater(avg_spec_accept_length, 1.9)
def _test_eos_token(self, engine):
prompt = "[INST] <<SYS>>\nYou are a helpful assistant.\n<</SYS>>\nToday is a sunny day and I like [/INST]"
params = {
"temperature": 0.1,
"max_new_tokens": 1024,
"skip_special_tokens": False,
}
tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
output = engine.generate(prompt, params)["text"]
print(f"{output=}")
tokens = tokenizer.encode(output, truncation=False)
self.assertNotIn(tokenizer.eos_token_id, tokens)
def _test_acc_length(self, engine):
prompt = [
"Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:",
] * 5 # test batched generation
sampling_params = {"temperature": 0, "max_new_tokens": 512}
output = engine.generate(prompt, sampling_params)
output = output[0]
if "spec_verify_ct" in output["meta_info"]:
acc_length = (
output["meta_info"]["completion_tokens"]
/ output["meta_info"]["spec_verify_ct"]
)
else:
acc_length = 1.0
speed = (
output["meta_info"]["completion_tokens"]
/ output["meta_info"]["e2e_latency"]
)
print(f"{acc_length=:.4f}, {speed=}")
if engine.server_args.model_path == DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST:
self.assertGreater(acc_length, 3.6)
else:
self.assertGreater(acc_length, 2.5)
class TestEAGLEEngineTokenMap(TestEAGLEEngine):
BASE_CONFIG = {
"model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
"speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
"speculative_algorithm": "EAGLE",
"speculative_num_steps": 5,
"speculative_eagle_topk": 4,
"speculative_num_draft_tokens": 8,
"speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
"mem_fraction_static": 0.7,
"cuda_graph_max_bs": 5,
"dtype": "float16",
}
NUM_CONFIGS = 1
class TestEAGLE3Engine(TestEAGLEEngine):
BASE_CONFIG = {
"model_path": "meta-llama/Llama-3.1-8B-Instruct",
"speculative_draft_model_path": "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
"speculative_algorithm": "EAGLE3",
"speculative_num_steps": 5,
"speculative_eagle_topk": 16,
"speculative_num_draft_tokens": 64,
"mem_fraction_static": 0.7,
"cuda_graph_max_bs": 5,
"dtype": "float16",
}
NUM_CONFIGS = 1
@unittest.skipIf(is_in_ci(), "To reduce the CI execution time.")
class TestEAGLEDraftExtend(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"--speculative-num-steps",
1,
"--speculative-eagle-topk",
1,
"--speculative-num-draft-tokens",
2,
"--max-running-requests",
4,
"--attention-backend",
"fa3",
],
)
cls.accept_len_threshold = 1.50
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_one_batch_accept_length(self):
resp = requests.get(self.base_url + "/flush_cache")
self.assertEqual(resp.status_code, 200)
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
url = self.base_url + "/generate"
data = {
"text": prompts,
"sampling_params": {
"temperature": 0,
"max_new_tokens": 512,
},
}
response = requests.post(url, json=data)
self.assertEqual(response.status_code, 200)
outputs = response.json()
for i in range(len(prompts)):
output = outputs[i]
if "spec_verify_ct" in output["meta_info"]:
acc_length = (
output["meta_info"]["completion_tokens"]
/ output["meta_info"]["spec_verify_ct"]
)
else:
acc_length = 1.0
print(f"{acc_length=}")
self.assertGreater(acc_length, self.accept_len_threshold)
class TestEAGLEDraftExtendFlashinfer(TestEAGLEDraftExtend):
@classmethod
def setUpClass(cls):
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"--speculative-num-steps",
1,
"--speculative-eagle-topk",
1,
"--speculative-num-draft-tokens",
2,
"--max-running-requests",
4,
"--attention-backend",
"flashinfer",
],
)
cls.accept_len_threshold = 1.50
@unittest.skipIf(is_in_ci(), "To reduce the CI execution time.")
class TestEAGLEDraftExtendTriton(TestEAGLEDraftExtend):
@classmethod
def setUpClass(cls):
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"--speculative-num-steps",
1,
"--speculative-eagle-topk",
1,
"--speculative-num-draft-tokens",
2,
"--max-running-requests",
4,
"--attention-backend",
"triton",
],
)
cls.accept_len_threshold = 1.50
@unittest.skipIf(is_in_ci(), "To reduce the CI execution time.")
class TestEAGLEDraftExtendFlashinferMLA(TestEAGLEDraftExtend):
@classmethod
def setUpClass(cls):
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
DEFAULT_MODEL_NAME_FOR_TEST_MLA,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-num-steps",
1,
"--speculative-eagle-topk",
1,
"--speculative-num-draft-tokens",
2,
"--max-running-requests",
4,
"--attention-backend",
"flashinfer",
],
)
cls.accept_len_threshold = 1.85
if __name__ == "__main__":
unittest.main()