sglang_v0.5.2/sglang/test/srt/test_local_attn.py

73 lines
1.9 KiB
Python

import os
import unittest
from types import SimpleNamespace
import requests
from sglang.srt.utils import get_device_sm, kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
@unittest.skipIf(get_device_sm() < 90, "Test requires CUDA SM 90 or higher")
class TestFlashAttention3LocalAttn(CustomTestCase):
model = DEFAULT_MODEL_NAME_FOR_TEST_LOCAL_ATTENTION
base_url = DEFAULT_URL_FOR_TEST
accuracy_threshold = 0.90
@classmethod
def get_server_args(cls):
return [
"--cuda-graph-max-bs",
"2",
"--attention-backend",
"fa3",
"--tp",
"4",
"--context-length",
"1000000",
]
@classmethod
def setUpClass(cls):
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=cls.get_server_args(),
env=os.environ,
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
requests.get(self.base_url + "/flush_cache")
args = SimpleNamespace(
num_shots=4,
num_questions=100,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
data_path=None,
)
metrics = run_eval_few_shot_gsm8k(args)
print(f"{metrics=}")
# Use the appropriate metric key based on the test class
metric_key = "accuracy"
self.assertGreater(metrics[metric_key], self.accuracy_threshold)
if __name__ == "__main__":
unittest.main()