sglang_v0.5.2/sglang/test/srt/test_pp_single_node.py

323 lines
9.7 KiB
Python

"""
Usage:
python3 -m unittest test_pp_single_node.TestPPAccuracy.test_gsm8k
python3 -m unittest test_pp_single_node.TestQwenPPAccuracy.test_pp_consistency
python3 -m unittest test_pp_single_node.TestFixedBugs.test_chunked_prefill_with_small_bs
"""
import time
import unittest
from types import SimpleNamespace
import requests
from sglang.bench_one_batch_server import BenchArgs as OneBatchBenchArgs
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_MLA_MODEL_NAME_FOR_TEST,
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
is_in_ci,
popen_launch_server,
run_bench_one_batch_server,
)
class TestPPAccuracy(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_url = "http://127.0.0.1:23333"
cls.process = popen_launch_server(
DEFAULT_MODEL_NAME_FOR_TEST,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--tp-size",
2,
"--pp-size",
2,
"--chunked-prefill-size",
256,
],
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
print(f"{metrics=}")
self.assertGreater(metrics["accuracy"], 0.74)
# Wait a little bit so that the memory check happens.
time.sleep(4)
def test_logprob(self):
response = requests.post(
f"{self.base_url}/generate",
json={
"text": "The capital of France is",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 16,
},
"return_logprob": True,
"top_logprobs_num": 5,
"logprob_start_len": 0,
},
)
response_json = response.json()
input_token_logprobs = response_json["meta_info"]["input_token_logprobs"]
output_token_logprobs = response_json["meta_info"]["output_token_logprobs"]
output_top_logprobs = response_json["meta_info"]["output_top_logprobs"]
assert len(input_token_logprobs) == 6
assert len(output_token_logprobs) == 16
assert len(output_top_logprobs) == 16
class TestDPAttentionDP2PP2(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_MLA_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--trust-remote-code",
"--tp",
"2",
"--pp-size",
"2",
"--enable-dp-attention",
"--dp",
"2",
],
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_mgsm_en(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="mgsm_en",
num_examples=None,
num_threads=1024,
)
metrics = run_eval(args)
print(f"{metrics=}")
self.assertGreater(metrics["score"], 0.8)
class TestQwenPPAccuracy(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_url = "http://127.0.0.1:23334" # different ports to avoid conflicts
cls.model_name = "Qwen/Qwen3-8B" # replace with your Qwen Model if needed
def run_gsm8k_test(self, pp_size):
process = popen_launch_server(
self.model_name,
self.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--pp-size",
pp_size,
"--chunked-prefill-size",
256,
],
)
try:
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
time.sleep(5)
return metrics
finally:
kill_process_tree(process.pid)
@unittest.skipIf(is_in_ci(), "To reduce the CI execution time.")
def test_pp_consistency(self):
baseline = self.run_gsm8k_test(pp_size=1)
pp_metrics = self.run_gsm8k_test(pp_size=2)
print(f"[Qwen PP Comparison] Baseline: {baseline} | PP: {pp_metrics}")
self.assertGreaterEqual(baseline["accuracy"], 0.74)
self.assertGreaterEqual(
pp_metrics["accuracy"],
baseline["accuracy"] - 0.02,
msg=(
f"PP accuracy dropped more than 1% compared to baseline. "
f"Baseline: {baseline['accuracy']:.2%}, PP: {pp_metrics['accuracy']:.2%}"
),
)
class TestQwenPPTieWeightsAccuracy(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_url = "http://127.0.0.1:23335" # different ports to avoid conflicts
cls.model_name = (
"Qwen/Qwen3-0.6B" # qwen3 < 8B all have tie_word_embeddings = True
)
def run_gsm8k_test(self, pp_size):
process = popen_launch_server(
self.model_name,
self.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--pp-size",
pp_size,
"--chunked-prefill-size",
256,
],
)
try:
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
time.sleep(5)
return metrics
finally:
kill_process_tree(process.pid)
def test_pp_consistency(self):
baseline = self.run_gsm8k_test(pp_size=1)
pp_metrics = self.run_gsm8k_test(pp_size=2)
print(f"[Qwen PP Comparison] Baseline: {baseline} | PP: {pp_metrics}")
self.assertGreaterEqual(baseline["accuracy"], 0.38)
self.assertGreaterEqual(
pp_metrics["accuracy"],
baseline["accuracy"] - 0.02,
msg=(
f"PP accuracy dropped more than 1% compared to baseline. "
f"Baseline: {baseline['accuracy']:.2%}, PP: {pp_metrics['accuracy']:.2%}"
),
)
class TestQwenMoePPAccuracy(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_url = "http://127.0.0.1:23336" # different ports to avoid conflicts
cls.model_name = "Qwen/Qwen3-30B-A3B" # replace with your Qwen Model if needed
def run_gsm8k_test(self, pp_size):
process = popen_launch_server(
self.model_name,
self.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--pp-size",
pp_size,
"--chunked-prefill-size",
256,
],
)
try:
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
time.sleep(5)
return metrics
finally:
kill_process_tree(process.pid)
def test_pp_consistency(self):
baseline = self.run_gsm8k_test(pp_size=1)
pp_metrics = self.run_gsm8k_test(pp_size=2)
print(f"[Qwen PP Comparison] Baseline: {baseline} | PP: {pp_metrics}")
self.assertGreaterEqual(baseline["accuracy"], 0.74)
self.assertGreaterEqual(
pp_metrics["accuracy"],
baseline["accuracy"] - 0.02,
msg=(
f"PP accuracy dropped more than 1% compared to baseline. "
f"Baseline: {baseline['accuracy']:.2%}, PP: {pp_metrics['accuracy']:.2%}"
),
)
class TestFixedBugs(unittest.TestCase):
def test_chunked_prefill_with_small_bs(self):
model = DEFAULT_MODEL_NAME_FOR_TEST
server_args = ServerArgs(model_path=model)
bench_args = OneBatchBenchArgs(
batch_size=(1,),
input_len=(1,),
output_len=(1,),
base_url=DEFAULT_URL_FOR_TEST,
)
other_server_args = [
"--tp-size",
2,
"--pp-size",
2,
"--chunked-prefill",
256,
"--max-running-requests",
2,
]
run_bench_one_batch_server(
model,
DEFAULT_URL_FOR_TEST,
server_args,
bench_args,
other_server_args,
)
if __name__ == "__main__":
unittest.main()