sglang_v0.5.2/sglang/test/srt/test_torch_compile_moe.py

78 lines
2.1 KiB
Python

import time
import unittest
from types import SimpleNamespace
import requests
from sglang.srt.utils import is_cuda, kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_BASE,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestTorchCompileMoe(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST_BASE
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=["--enable-torch-compile", "--torch-compile-max-bs", "4"],
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_mmlu(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
)
metrics = run_eval(args)
self.assertGreaterEqual(metrics["score"], 0.50)
def run_decode(self, max_new_tokens):
response = requests.post(
self.base_url + "/generate",
json={
"text": "The capital of France is",
"sampling_params": {
"temperature": 0,
"max_new_tokens": max_new_tokens,
"ignore_eos": True,
},
},
)
return response.json()
def test_throughput(self):
# Warmup
res = self.run_decode(16)
max_tokens = 256
tic = time.perf_counter()
res = self.run_decode(max_tokens)
tok = time.perf_counter()
print(f"{res=}")
throughput = max_tokens / (tok - tic)
if is_cuda():
self.assertGreaterEqual(throughput, 285)
else:
self.assertGreaterEqual(throughput, 270)
if __name__ == "__main__":
unittest.main()