171 lines
5.5 KiB
Python
171 lines
5.5 KiB
Python
import asyncio
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.distributed.device_mesh import init_device_mesh
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from sglang.srt.entrypoints.engine import Engine
|
|
from sglang.srt.weight_sync.utils import update_weights
|
|
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST
|
|
|
|
|
|
class AsyncEngine(Engine):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
async def update_weights_from_tensor(self, update_weights_request):
|
|
return await self.tokenizer_manager.update_weights_from_tensor(
|
|
update_weights_request, None
|
|
)
|
|
|
|
|
|
def is_distributed_available():
|
|
"""Check if distributed training environment is available"""
|
|
required_vars = ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT"]
|
|
return all(var in os.environ for var in required_vars)
|
|
|
|
|
|
def setup_single_process_distributed():
|
|
"""Setup distributed environment for single process testing"""
|
|
if not is_distributed_available():
|
|
os.environ["RANK"] = "0"
|
|
os.environ["WORLD_SIZE"] = "1"
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = "12356"
|
|
os.environ["LOCAL_RANK"] = "0"
|
|
|
|
|
|
class TestUtilsUpdateWeights(unittest.TestCase):
|
|
"""Test class for utils.update_weights function"""
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
"""Setup distributed environment and test fixtures for the entire test class"""
|
|
cls.setup_distributed()
|
|
cls.setup_test_engine()
|
|
cls.setup_test_model()
|
|
cls.setup_device_mesh()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
"""Cleanup after all tests"""
|
|
if hasattr(cls, "engine") and cls.engine:
|
|
cls.engine.shutdown()
|
|
|
|
# Cleanup distributed
|
|
if dist.is_initialized():
|
|
dist.destroy_process_group()
|
|
|
|
@classmethod
|
|
def setup_distributed(cls):
|
|
"""Setup distributed environment for testing"""
|
|
setup_single_process_distributed()
|
|
|
|
if not dist.is_initialized():
|
|
try:
|
|
dist.init_process_group(
|
|
backend="nccl" if torch.cuda.is_available() else "gloo"
|
|
)
|
|
except Exception as e:
|
|
raise unittest.SkipTest(
|
|
f"Could not initialize distributed backend: {e}"
|
|
)
|
|
|
|
cls.rank = dist.get_rank()
|
|
cls.world_size = dist.get_world_size()
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_device(cls.rank % torch.cuda.device_count())
|
|
|
|
# Set up environment variables
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
os.environ["NCCL_CUMEM_ENABLE"] = "0"
|
|
os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "4"
|
|
os.environ["CUDA_MODULE_LOADING"] = "AUTO"
|
|
|
|
@classmethod
|
|
def setup_test_engine(cls):
|
|
"""Setup test engine"""
|
|
if cls.rank == 0:
|
|
cls.engine = AsyncEngine(
|
|
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
dtype="bfloat16",
|
|
mem_fraction_static=0.3,
|
|
enable_memory_saver=True,
|
|
tp_size=cls.world_size,
|
|
disable_cuda_graph=False,
|
|
)
|
|
else:
|
|
cls.engine = None
|
|
|
|
@classmethod
|
|
def setup_test_model(cls):
|
|
"""Load test model"""
|
|
try:
|
|
cls.model = AutoModelForCausalLM.from_pretrained(
|
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
device_map="cpu",
|
|
trust_remote_code=True,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=(
|
|
torch.float16 if torch.cuda.is_available() else torch.float32
|
|
),
|
|
)
|
|
except Exception as e:
|
|
raise unittest.SkipTest(f"Could not load test model: {e}")
|
|
|
|
@classmethod
|
|
def setup_device_mesh(cls):
|
|
"""Create device mesh for testing"""
|
|
if not torch.cuda.is_available():
|
|
raise unittest.SkipTest("CUDA not available for device mesh")
|
|
|
|
cls.device_mesh_key = "tp"
|
|
cls.mesh = init_device_mesh(
|
|
"cuda", (cls.world_size,), mesh_dim_names=(cls.device_mesh_key,)
|
|
)
|
|
|
|
def create_test_params_batch(self, model, num_params=64):
|
|
"""Create a batch of test parameters from the model"""
|
|
param_names = []
|
|
test_tensors = []
|
|
|
|
# Get first few parameters from the model for testing
|
|
for i, (name, tensor) in enumerate(model.named_parameters()):
|
|
if i >= num_params:
|
|
break
|
|
param_names.append(name)
|
|
# Create test tensor with known values, matching original shape and dtype
|
|
test_tensor = torch.full_like(tensor, 1.5, dtype=tensor.dtype).cuda()
|
|
test_tensors.append(test_tensor)
|
|
|
|
return list(zip(param_names, test_tensors))
|
|
|
|
def test_utils_update_weights(self):
|
|
"""Test basic functionality of utils.update_weights"""
|
|
|
|
async def async_test():
|
|
# Create test parameters batch
|
|
params_batch = self.create_test_params_batch(self.model, num_params=2)
|
|
|
|
# Test the utils.update_weights function
|
|
result = await update_weights(
|
|
engine=self.engine,
|
|
params_batch=params_batch,
|
|
device_mesh_key=self.device_mesh_key,
|
|
device_mesh=self.mesh,
|
|
load_format=None,
|
|
)
|
|
|
|
self.assertIn("Success", result)
|
|
|
|
# Run the async test
|
|
asyncio.run(async_test())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|