sglang_v0.5.2/sglang/test/srt/test_utils_update_weights.py

171 lines
5.5 KiB
Python

import asyncio
import os
import unittest
import torch
import torch.distributed as dist
from torch.distributed.device_mesh import init_device_mesh
from transformers import AutoModelForCausalLM
from sglang.srt.entrypoints.engine import Engine
from sglang.srt.weight_sync.utils import update_weights
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST
class AsyncEngine(Engine):
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def update_weights_from_tensor(self, update_weights_request):
return await self.tokenizer_manager.update_weights_from_tensor(
update_weights_request, None
)
def is_distributed_available():
"""Check if distributed training environment is available"""
required_vars = ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT"]
return all(var in os.environ for var in required_vars)
def setup_single_process_distributed():
"""Setup distributed environment for single process testing"""
if not is_distributed_available():
os.environ["RANK"] = "0"
os.environ["WORLD_SIZE"] = "1"
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12356"
os.environ["LOCAL_RANK"] = "0"
class TestUtilsUpdateWeights(unittest.TestCase):
"""Test class for utils.update_weights function"""
@classmethod
def setUpClass(cls):
"""Setup distributed environment and test fixtures for the entire test class"""
cls.setup_distributed()
cls.setup_test_engine()
cls.setup_test_model()
cls.setup_device_mesh()
@classmethod
def tearDownClass(cls):
"""Cleanup after all tests"""
if hasattr(cls, "engine") and cls.engine:
cls.engine.shutdown()
# Cleanup distributed
if dist.is_initialized():
dist.destroy_process_group()
@classmethod
def setup_distributed(cls):
"""Setup distributed environment for testing"""
setup_single_process_distributed()
if not dist.is_initialized():
try:
dist.init_process_group(
backend="nccl" if torch.cuda.is_available() else "gloo"
)
except Exception as e:
raise unittest.SkipTest(
f"Could not initialize distributed backend: {e}"
)
cls.rank = dist.get_rank()
cls.world_size = dist.get_world_size()
if torch.cuda.is_available():
torch.cuda.set_device(cls.rank % torch.cuda.device_count())
# Set up environment variables
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
os.environ["NCCL_CUMEM_ENABLE"] = "0"
os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "4"
os.environ["CUDA_MODULE_LOADING"] = "AUTO"
@classmethod
def setup_test_engine(cls):
"""Setup test engine"""
if cls.rank == 0:
cls.engine = AsyncEngine(
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
dtype="bfloat16",
mem_fraction_static=0.3,
enable_memory_saver=True,
tp_size=cls.world_size,
disable_cuda_graph=False,
)
else:
cls.engine = None
@classmethod
def setup_test_model(cls):
"""Load test model"""
try:
cls.model = AutoModelForCausalLM.from_pretrained(
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
device_map="cpu",
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=(
torch.float16 if torch.cuda.is_available() else torch.float32
),
)
except Exception as e:
raise unittest.SkipTest(f"Could not load test model: {e}")
@classmethod
def setup_device_mesh(cls):
"""Create device mesh for testing"""
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA not available for device mesh")
cls.device_mesh_key = "tp"
cls.mesh = init_device_mesh(
"cuda", (cls.world_size,), mesh_dim_names=(cls.device_mesh_key,)
)
def create_test_params_batch(self, model, num_params=64):
"""Create a batch of test parameters from the model"""
param_names = []
test_tensors = []
# Get first few parameters from the model for testing
for i, (name, tensor) in enumerate(model.named_parameters()):
if i >= num_params:
break
param_names.append(name)
# Create test tensor with known values, matching original shape and dtype
test_tensor = torch.full_like(tensor, 1.5, dtype=tensor.dtype).cuda()
test_tensors.append(test_tensor)
return list(zip(param_names, test_tensors))
def test_utils_update_weights(self):
"""Test basic functionality of utils.update_weights"""
async def async_test():
# Create test parameters batch
params_batch = self.create_test_params_batch(self.model, num_params=2)
# Test the utils.update_weights function
result = await update_weights(
engine=self.engine,
params_batch=params_batch,
device_mesh_key=self.device_mesh_key,
device_mesh=self.mesh,
load_format=None,
)
self.assertIn("Success", result)
# Run the async test
asyncio.run(async_test())
if __name__ == "__main__":
unittest.main()