528 lines
18 KiB
Python
528 lines
18 KiB
Python
import base64
|
||
import io
|
||
import os
|
||
|
||
import numpy as np
|
||
import openai
|
||
import requests
|
||
from PIL import Image
|
||
|
||
from sglang.srt.utils import kill_process_tree
|
||
from sglang.test.test_utils import DEFAULT_URL_FOR_TEST, CustomTestCase
|
||
|
||
# image
|
||
IMAGE_MAN_IRONING_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/man_ironing_on_back_of_suv.png"
|
||
IMAGE_SGL_LOGO_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/sgl_logo.png"
|
||
|
||
# video
|
||
VIDEO_JOBS_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/videos/jobs_presenting_ipod.mp4"
|
||
|
||
# audio
|
||
AUDIO_TRUMP_SPEECH_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/Trump_WEF_2018_10s.mp3"
|
||
AUDIO_BIRD_SONG_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/bird_song.mp3"
|
||
|
||
|
||
class TestOpenAIOmniServerBase(CustomTestCase):
|
||
@classmethod
|
||
def setUpClass(cls):
|
||
cls.model = ""
|
||
cls.base_url = DEFAULT_URL_FOR_TEST
|
||
cls.api_key = "sk-123456"
|
||
cls.process = None
|
||
cls.base_url += "/v1"
|
||
|
||
@classmethod
|
||
def tearDownClass(cls):
|
||
kill_process_tree(cls.process.pid)
|
||
|
||
def get_vision_request_kwargs(self):
|
||
return self.get_request_kwargs()
|
||
|
||
def get_request_kwargs(self):
|
||
return {}
|
||
|
||
def get_or_download_file(self, url: str) -> str:
|
||
cache_dir = os.path.expanduser("~/.cache")
|
||
if url is None:
|
||
raise ValueError()
|
||
file_name = url.split("/")[-1]
|
||
file_path = os.path.join(cache_dir, file_name)
|
||
os.makedirs(cache_dir, exist_ok=True)
|
||
|
||
if not os.path.exists(file_path):
|
||
response = requests.get(url)
|
||
response.raise_for_status()
|
||
|
||
with open(file_path, "wb") as f:
|
||
f.write(response.content)
|
||
return file_path
|
||
|
||
|
||
class AudioOpenAITestMixin(TestOpenAIOmniServerBase):
|
||
def prepare_audio_messages(self, prompt, audio_file_name):
|
||
messages = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "audio_url",
|
||
"audio_url": {"url": f"{audio_file_name}"},
|
||
},
|
||
{
|
||
"type": "text",
|
||
"text": prompt,
|
||
},
|
||
],
|
||
}
|
||
]
|
||
|
||
return messages
|
||
|
||
def get_audio_request_kwargs(self):
|
||
return self.get_request_kwargs()
|
||
|
||
def get_audio_response(self, url: str, prompt, category):
|
||
audio_file_path = self.get_or_download_file(url)
|
||
client = openai.Client(api_key="sk-123456", base_url=self.base_url)
|
||
|
||
messages = self.prepare_audio_messages(prompt, audio_file_path)
|
||
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=messages,
|
||
temperature=0,
|
||
max_tokens=128,
|
||
stream=False,
|
||
**(self.get_audio_request_kwargs()),
|
||
)
|
||
|
||
audio_response = response.choices[0].message.content
|
||
|
||
print("-" * 30)
|
||
print(f"audio {category} response:\n{audio_response}")
|
||
print("-" * 30)
|
||
|
||
audio_response = audio_response.lower()
|
||
|
||
self.assertIsNotNone(audio_response)
|
||
self.assertGreater(len(audio_response), 0)
|
||
|
||
return audio_response.lower()
|
||
|
||
def test_audio_speech_completion(self):
|
||
# a fragment of Trump's speech
|
||
audio_response = self.get_audio_response(
|
||
AUDIO_TRUMP_SPEECH_URL,
|
||
"Listen to this audio and write down the audio transcription in English.",
|
||
category="speech",
|
||
)
|
||
check_list = [
|
||
"thank you",
|
||
"it's a privilege to be here",
|
||
"leader",
|
||
"science",
|
||
"art",
|
||
]
|
||
for check_word in check_list:
|
||
assert (
|
||
check_word in audio_response
|
||
), f"audio_response: |{audio_response}| should contain |{check_word}|"
|
||
|
||
def test_audio_ambient_completion(self):
|
||
# bird song
|
||
audio_response = self.get_audio_response(
|
||
AUDIO_BIRD_SONG_URL,
|
||
"Please listen to the audio snippet carefully and transcribe the content in English.",
|
||
"ambient",
|
||
)
|
||
assert "bird" in audio_response
|
||
|
||
|
||
class ImageOpenAITestMixin(TestOpenAIOmniServerBase):
|
||
def test_single_image_chat_completion(self):
|
||
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
||
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
||
},
|
||
{
|
||
"type": "text",
|
||
"text": "Describe this image in a sentence.",
|
||
},
|
||
],
|
||
},
|
||
],
|
||
temperature=0,
|
||
**(self.get_vision_request_kwargs()),
|
||
)
|
||
|
||
assert response.choices[0].message.role == "assistant"
|
||
text = response.choices[0].message.content
|
||
assert isinstance(text, str)
|
||
# `driver` is for gemma-3-it
|
||
assert (
|
||
"man" in text or "person" or "driver" in text
|
||
), f"text: {text}, should contain man, person or driver"
|
||
assert (
|
||
"cab" in text
|
||
or "taxi" in text
|
||
or "SUV" in text
|
||
or "vehicle" in text
|
||
or "car" in text
|
||
), f"text: {text}, should contain cab, taxi, SUV, vehicle or car"
|
||
# MiniCPMO fails to recognize `iron`, but `hanging`
|
||
assert (
|
||
"iron" in text
|
||
or "hang" in text
|
||
or "cloth" in text
|
||
or "coat" in text
|
||
or "holding" in text
|
||
or "outfit" in text
|
||
), f"text: {text}, should contain iron, hang, cloth, coat or holding or outfit"
|
||
assert response.id
|
||
assert response.created
|
||
assert response.usage.prompt_tokens > 0
|
||
assert response.usage.completion_tokens > 0
|
||
assert response.usage.total_tokens > 0
|
||
|
||
def test_multi_turn_chat_completion(self):
|
||
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
||
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
||
},
|
||
{
|
||
"type": "text",
|
||
"text": "Describe this image in a sentence.",
|
||
},
|
||
],
|
||
},
|
||
{
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": "There is a man at the back of a yellow cab ironing his clothes.",
|
||
}
|
||
],
|
||
},
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "text", "text": "Repeat your previous answer."}
|
||
],
|
||
},
|
||
],
|
||
temperature=0,
|
||
**(self.get_vision_request_kwargs()),
|
||
)
|
||
|
||
assert response.choices[0].message.role == "assistant"
|
||
text = response.choices[0].message.content
|
||
assert isinstance(text, str)
|
||
assert (
|
||
"man" in text or "cab" in text
|
||
), f"text: {text}, should contain man or cab"
|
||
assert response.id
|
||
assert response.created
|
||
assert response.usage.prompt_tokens > 0
|
||
assert response.usage.completion_tokens > 0
|
||
assert response.usage.total_tokens > 0
|
||
|
||
def test_multi_images_chat_completion(self):
|
||
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
||
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
||
"modalities": "multi-images",
|
||
},
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {"url": IMAGE_SGL_LOGO_URL},
|
||
"modalities": "multi-images",
|
||
},
|
||
{
|
||
"type": "text",
|
||
"text": "I have two very different images. They are not related at all. "
|
||
"Please describe the first image in one sentence, and then describe the second image in another sentence.",
|
||
},
|
||
],
|
||
},
|
||
],
|
||
temperature=0,
|
||
**(self.get_vision_request_kwargs()),
|
||
)
|
||
|
||
assert response.choices[0].message.role == "assistant"
|
||
text = response.choices[0].message.content
|
||
assert isinstance(text, str)
|
||
print("-" * 30)
|
||
print(f"Multi images response:\n{text}")
|
||
print("-" * 30)
|
||
assert (
|
||
"man" in text
|
||
or "cab" in text
|
||
or "SUV" in text
|
||
or "taxi" in text
|
||
or "car" in text
|
||
), f"text: {text}, should contain man, cab, SUV, taxi or car"
|
||
assert (
|
||
"logo" in text or '"S"' in text or "SG" in text or "graphic" in text
|
||
), f"text: {text}, should contain logo, S or SG or graphic"
|
||
assert response.id
|
||
assert response.created
|
||
assert response.usage.prompt_tokens > 0
|
||
assert response.usage.completion_tokens > 0
|
||
assert response.usage.total_tokens > 0
|
||
|
||
def _test_mixed_image_audio_chat_completion(self):
|
||
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
||
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {"url": IMAGE_MAN_IRONING_URL},
|
||
},
|
||
{
|
||
"type": "audio_url",
|
||
"audio_url": {"url": AUDIO_TRUMP_SPEECH_URL},
|
||
},
|
||
{
|
||
"type": "text",
|
||
"text": "Please describe the image in one sentence, and then write down the audio transcription in English.",
|
||
},
|
||
],
|
||
},
|
||
],
|
||
temperature=0,
|
||
**(self.get_vision_request_kwargs()),
|
||
)
|
||
|
||
assert response.choices[0].message.role == "assistant"
|
||
text = response.choices[0].message.content
|
||
assert isinstance(text, str)
|
||
print("-" * 30)
|
||
print(f"Mixed image & audio response:\n{text}")
|
||
print("-" * 30)
|
||
assert (
|
||
"man" in text
|
||
or "cab" in text
|
||
or "SUV" in text
|
||
or "taxi" in text
|
||
or "car" in text
|
||
), f"text: {text}, should contain man, cab, SUV, taxi or car"
|
||
check_list = [
|
||
"thank you",
|
||
"it's a privilege to be here",
|
||
"leader",
|
||
"science",
|
||
"art",
|
||
]
|
||
for check_word in check_list:
|
||
assert (
|
||
check_word in text
|
||
), f"text: |{text}| should contain |{check_word}|"
|
||
assert response.id
|
||
assert response.created
|
||
assert response.usage.prompt_tokens > 0
|
||
assert response.usage.completion_tokens > 0
|
||
assert response.usage.total_tokens > 0
|
||
|
||
def prepare_video_images_messages(self, video_path):
|
||
# the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
|
||
# the size of the video embeds differs from the `modality` argument when preprocessed
|
||
|
||
# We import decord here to avoid a strange Segmentation fault (core dumped) issue.
|
||
# The following import order will cause Segmentation fault.
|
||
# import decord
|
||
# from transformers import AutoTokenizer
|
||
from decord import VideoReader, cpu
|
||
|
||
max_frames_num = 10
|
||
vr = VideoReader(video_path, ctx=cpu(0))
|
||
total_frame_num = len(vr)
|
||
uniform_sampled_frames = np.linspace(
|
||
0, total_frame_num - 1, max_frames_num, dtype=int
|
||
)
|
||
frame_idx = uniform_sampled_frames.tolist()
|
||
frames = vr.get_batch(frame_idx).asnumpy()
|
||
|
||
base64_frames = []
|
||
for frame in frames:
|
||
pil_img = Image.fromarray(frame)
|
||
buff = io.BytesIO()
|
||
pil_img.save(buff, format="JPEG")
|
||
base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
|
||
base64_frames.append(base64_str)
|
||
|
||
messages = [{"role": "user", "content": []}]
|
||
frame_format = {
|
||
"type": "image_url",
|
||
"image_url": {"url": "data:image/jpeg;base64,{}"},
|
||
"modalities": "image",
|
||
}
|
||
|
||
for base64_frame in base64_frames:
|
||
frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
|
||
base64_frame
|
||
)
|
||
messages[0]["content"].append(frame_format.copy())
|
||
|
||
prompt = {"type": "text", "text": "Please describe the video in detail."}
|
||
messages[0]["content"].append(prompt)
|
||
|
||
return messages
|
||
|
||
def test_video_images_chat_completion(self):
|
||
url = VIDEO_JOBS_URL
|
||
file_path = self.get_or_download_file(url)
|
||
|
||
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
||
|
||
messages = self.prepare_video_images_messages(file_path)
|
||
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=messages,
|
||
temperature=0,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
)
|
||
|
||
video_response = response.choices[0].message.content
|
||
|
||
print("-" * 30)
|
||
print(f"Video images response:\n{video_response}")
|
||
print("-" * 30)
|
||
|
||
# Add assertions to validate the video response
|
||
assert (
|
||
"iPod" in video_response
|
||
or "device" in video_response
|
||
or "microphone" in video_response
|
||
), f"""
|
||
====================== video_response =====================
|
||
{video_response}
|
||
===========================================================
|
||
should contain 'iPod' or 'device' or 'microphone'
|
||
"""
|
||
assert (
|
||
"man" in video_response
|
||
or "person" in video_response
|
||
or "individual" in video_response
|
||
or "speaker" in video_response
|
||
or "presenter" in video_response
|
||
or "Steve" in video_response
|
||
or "hand" in video_response
|
||
), f"""
|
||
====================== video_response =====================
|
||
{video_response}
|
||
===========================================================
|
||
should contain 'man' or 'person' or 'individual' or 'speaker' or 'presenter' or 'Steve' or 'hand'
|
||
"""
|
||
assert (
|
||
"present" in video_response
|
||
or "examine" in video_response
|
||
or "display" in video_response
|
||
or "hold" in video_response
|
||
), f"""
|
||
====================== video_response =====================
|
||
{video_response}
|
||
===========================================================
|
||
should contain 'present' or 'examine' or 'display' or 'hold'
|
||
"""
|
||
self.assertIsNotNone(video_response)
|
||
self.assertGreater(len(video_response), 0)
|
||
|
||
|
||
class VideoOpenAITestMixin(TestOpenAIOmniServerBase):
|
||
def prepare_video_messages(self, video_path):
|
||
messages = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{
|
||
"type": "video_url",
|
||
"video_url": {"url": f"{video_path}"},
|
||
},
|
||
{"type": "text", "text": "Please describe the video in detail."},
|
||
],
|
||
},
|
||
]
|
||
return messages
|
||
|
||
def test_video_chat_completion(self):
|
||
url = VIDEO_JOBS_URL
|
||
file_path = self.get_or_download_file(url)
|
||
|
||
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
|
||
|
||
messages = self.prepare_video_messages(file_path)
|
||
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=messages,
|
||
temperature=0,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
**(self.get_vision_request_kwargs()),
|
||
)
|
||
|
||
video_response = response.choices[0].message.content
|
||
|
||
print("-" * 30)
|
||
print(f"Video response:\n{video_response}")
|
||
print("-" * 30)
|
||
|
||
# Add assertions to validate the video response
|
||
assert (
|
||
"iPod" in video_response
|
||
or "device" in video_response
|
||
or "microphone" in video_response
|
||
), f"video_response: {video_response}, should contain 'iPod' or 'device'"
|
||
assert (
|
||
"man" in video_response
|
||
or "person" in video_response
|
||
or "individual" in video_response
|
||
or "speaker" in video_response
|
||
or "presenter" in video_response
|
||
or "hand" in video_response
|
||
), f"video_response: {video_response}, should either have 'man' in video_response, or 'person' in video_response, or 'individual' in video_response or 'speaker' in video_response or 'presenter' or 'hand' in video_response"
|
||
assert (
|
||
"present" in video_response
|
||
or "examine" in video_response
|
||
or "display" in video_response
|
||
or "hold" in video_response
|
||
), f"video_response: {video_response}, should contain 'present', 'examine', 'display', or 'hold'"
|
||
assert (
|
||
"black" in video_response or "dark" in video_response
|
||
), f"video_response: {video_response}, should contain 'black' or 'dark'"
|
||
self.assertIsNotNone(video_response)
|
||
self.assertGreater(len(video_response), 0)
|