sglang_v0.5.2/sglang/test/srt/test_vlm_input_format.py

259 lines
8.8 KiB
Python

import json
import unittest
from io import BytesIO
from typing import Optional
import requests
import torch
from PIL import Image
from transformers import (
AutoModel,
AutoProcessor,
Gemma3ForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
)
from sglang import Engine
from sglang.srt.entrypoints.openai.protocol import ChatCompletionRequest
from sglang.srt.parser.conversation import generate_chat_conv
TEST_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
class VLMInputTestBase:
model_path = None
chat_template = None
processor = None
visual = None # Should be a callable for precomputed embeddings
@classmethod
def setUpClass(cls):
assert cls.model_path is not None, "Set model_path in subclass"
assert cls.chat_template is not None, "Set chat_template in subclass"
cls.image_url = TEST_IMAGE_URL
cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
response = requests.get(cls.image_url)
cls.main_image = Image.open(BytesIO(response.content))
cls.processor = AutoProcessor.from_pretrained(
cls.model_path, trust_remote_code=True, use_fast=True
)
cls._init_visual()
@classmethod
def _init_visual(cls):
"""Override in subclass to set up cls.visual as a callable for precomputed embeddings."""
raise NotImplementedError
def setUp(self):
self.engine = Engine(
model_path=self.model_path,
chat_template=self.chat_template,
device=self.device.type,
mem_fraction_static=0.8,
enable_multimodal=True,
disable_cuda_graph=True,
trust_remote_code=True,
)
def tearDown(self):
self.engine.shutdown()
def verify_response(self, output):
out_text = output["text"].lower()
assert "taxi" in out_text or "cab" in out_text or "car" in out_text, out_text
def get_completion_request(self) -> ChatCompletionRequest:
json_structure = {
"model": self.model_path,
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": self.image_url}},
{"type": "text", "text": "What's in this picture?"},
],
}
],
}
json_str = json.dumps(json_structure)
return ChatCompletionRequest.model_validate_json(json_str)
def get_processor_output(self, req: Optional[ChatCompletionRequest] = None):
if req is None:
req = self.get_completion_request()
conv = generate_chat_conv(req, template_name=self.chat_template)
text = conv.get_prompt()
# Process inputs using processor
inputs = self.processor(
text=[text],
images=[self.main_image],
return_tensors="pt",
).to(self.device)
return inputs
async def test_understands_image(self):
req = self.get_completion_request()
conv = generate_chat_conv(req, template_name=self.chat_template)
text = conv.get_prompt()
output = await self.engine.async_generate(
prompt=text,
image_data=[self.main_image],
sampling_params=dict(temperature=0.0),
)
self.verify_response(output)
async def test_understands_precomputed_embeddings(self):
req = self.get_completion_request()
processor_output = self.get_processor_output(req=req)
with torch.inference_mode():
precomputed_embeddings = self.__class__.visual(processor_output)
output = await self.engine.async_generate(
input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
image_data=[
self._precomputed_image_data(processor_output, precomputed_embeddings)
],
sampling_params=dict(temperature=0.0),
)
self.verify_response(output)
async def test_understands_pixel_values(self):
req = self.get_completion_request()
processor_output = self.get_processor_output(req=req)
output = await self.engine.async_generate(
input_ids=processor_output["input_ids"][0].detach().cpu().tolist(),
image_data=[self._pixel_values_image_data(processor_output)],
sampling_params=dict(temperature=0.0),
)
self.verify_response(output)
def _precomputed_image_data(self, processor_output, precomputed_embeddings):
"""This should not be overridden."""
return dict(
modality="IMAGE",
precomputed_embeddings=precomputed_embeddings,
)
def _pixel_values_image_data(self, processor_output):
"""Override in subclass to pass the correct set of arguments."""
raise NotImplementedError
class TestQwenVLUnderstandsImage(VLMInputTestBase, unittest.IsolatedAsyncioTestCase):
model_path = "Qwen/Qwen2.5-VL-3B-Instruct"
chat_template = "qwen2-vl"
@classmethod
def _init_visual(cls):
cls.visual_model = (
Qwen2_5_VLForConditionalGeneration.from_pretrained(
cls.model_path, torch_dtype=torch.bfloat16
)
.eval()
.visual.to(cls.device)
)
cls.visual = lambda processor_output: cls.visual_model(
processor_output["pixel_values"], processor_output["image_grid_thw"]
)
def _pixel_values_image_data(self, processor_output):
return dict(
modality="IMAGE",
image_grid_thw=processor_output["image_grid_thw"],
pixel_values=processor_output["pixel_values"],
)
class TestGemmaUnderstandsImage(VLMInputTestBase, unittest.IsolatedAsyncioTestCase):
model_path = "google/gemma-3-4b-it"
chat_template = "gemma-it"
@classmethod
def _init_visual(cls):
model = Gemma3ForConditionalGeneration.from_pretrained(
cls.model_path, torch_dtype=torch.bfloat16
)
cls.vision_tower = model.vision_tower.eval().to(cls.device)
cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)
cls.visual = lambda processor_output: cls.mm_projector(
cls.vision_tower(
pixel_values=processor_output["pixel_values"]
).last_hidden_state
)
def _pixel_values_image_data(self, processor_output):
return dict(
modality="IMAGE",
pixel_values=processor_output["pixel_values"][0],
)
class TestKimiVLImageUnderstandsImage(
VLMInputTestBase, unittest.IsolatedAsyncioTestCase
):
model_path = "moonshotai/Kimi-VL-A3B-Instruct"
chat_template = "kimi-vl"
@classmethod
def _init_visual(cls):
model = AutoModel.from_pretrained(cls.model_path, trust_remote_code=True)
cls.vision_tower = model.vision_tower.eval().to(cls.device)
cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)
cls.visual = lambda tokenizer_output: cls.mm_projector(
cls.vision_tower(
pixel_values=tokenizer_output["pixel_values"],
grid_hws=tokenizer_output["image_grid_hws"],
)
)
def _pixel_values_image_data(self, processor_output):
return dict(
modality="IMAGE",
pixel_values=processor_output["pixel_values"],
image_grid_hws=processor_output["image_grid_hws"],
)
# not for CI: too large
# class TestLlama4ImageUnderstandsImage(
# VLMInputTestBase, unittest.IsolatedAsyncioTestCase
# ):
# model_path = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
# chat_template = "llama_4_vision"
# def setUp(self):
# self.engine = Engine(
# model_path=self.model_path,
# trust_remote_code=True,
# chat_template=self.chat_template,
# enable_multimodal=True,
# mem_fraction_static=0.8,
# tp_size=4,
# attention_backend="fa3",
# context_length=65536,
# )
# @classmethod
# def _init_visual(cls):
# model = AutoModel.from_pretrained(cls.model_path, trust_remote_code=True, torch_dtype="auto")
# cls.vision_tower = model.vision_model.eval().to(cls.device)
# cls.mm_projector = model.multi_modal_projector.eval().to(cls.device)
# cls.visual = lambda tokenizer_output: cls.mm_projector(
# cls.vision_tower(
# pixel_values=tokenizer_output["pixel_values"],
# ).last_hidden_state.flatten(0, -2)
# )
# def _pixel_values_image_data(self, processor_output):
# return dict(
# modality="IMAGE",
# pixel_values=processor_output["pixel_values"],
# )
if __name__ == "__main__":
unittest.main()