193 lines
6.3 KiB
Python
193 lines
6.3 KiB
Python
import copy
|
|
import io
|
|
from contextlib import redirect_stdout
|
|
|
|
import numpy as np
|
|
import pycocotools.mask as mask_util
|
|
import torch
|
|
import utils
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
|
|
class CocoEvaluator:
|
|
def __init__(self, coco_gt, iou_types):
|
|
if not isinstance(iou_types, (list, tuple)):
|
|
raise TypeError(f"This constructor expects iou_types of type list or tuple, instead got {type(iou_types)}")
|
|
coco_gt = copy.deepcopy(coco_gt)
|
|
self.coco_gt = coco_gt
|
|
|
|
self.iou_types = iou_types
|
|
self.coco_eval = {}
|
|
for iou_type in iou_types:
|
|
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
|
|
|
self.img_ids = []
|
|
self.eval_imgs = {k: [] for k in iou_types}
|
|
|
|
def update(self, predictions):
|
|
img_ids = list(np.unique(list(predictions.keys())))
|
|
self.img_ids.extend(img_ids)
|
|
|
|
for iou_type in self.iou_types:
|
|
results = self.prepare(predictions, iou_type)
|
|
with redirect_stdout(io.StringIO()):
|
|
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
|
|
coco_eval = self.coco_eval[iou_type]
|
|
|
|
coco_eval.cocoDt = coco_dt
|
|
coco_eval.params.imgIds = list(img_ids)
|
|
img_ids, eval_imgs = evaluate(coco_eval)
|
|
|
|
self.eval_imgs[iou_type].append(eval_imgs)
|
|
|
|
def synchronize_between_processes(self):
|
|
for iou_type in self.iou_types:
|
|
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
|
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
|
|
|
def accumulate(self):
|
|
for coco_eval in self.coco_eval.values():
|
|
coco_eval.accumulate()
|
|
|
|
def summarize(self):
|
|
for iou_type, coco_eval in self.coco_eval.items():
|
|
print(f"IoU metric: {iou_type}")
|
|
coco_eval.summarize()
|
|
|
|
def prepare(self, predictions, iou_type):
|
|
if iou_type == "bbox":
|
|
return self.prepare_for_coco_detection(predictions)
|
|
if iou_type == "segm":
|
|
return self.prepare_for_coco_segmentation(predictions)
|
|
if iou_type == "keypoints":
|
|
return self.prepare_for_coco_keypoint(predictions)
|
|
raise ValueError(f"Unknown iou type {iou_type}")
|
|
|
|
def prepare_for_coco_detection(self, predictions):
|
|
coco_results = []
|
|
for original_id, prediction in predictions.items():
|
|
if len(prediction) == 0:
|
|
continue
|
|
|
|
boxes = prediction["boxes"]
|
|
boxes = convert_to_xywh(boxes).tolist()
|
|
scores = prediction["scores"].tolist()
|
|
labels = prediction["labels"].tolist()
|
|
|
|
coco_results.extend(
|
|
[
|
|
{
|
|
"image_id": original_id,
|
|
"category_id": labels[k],
|
|
"bbox": box,
|
|
"score": scores[k],
|
|
}
|
|
for k, box in enumerate(boxes)
|
|
]
|
|
)
|
|
return coco_results
|
|
|
|
def prepare_for_coco_segmentation(self, predictions):
|
|
coco_results = []
|
|
for original_id, prediction in predictions.items():
|
|
if len(prediction) == 0:
|
|
continue
|
|
|
|
scores = prediction["scores"]
|
|
labels = prediction["labels"]
|
|
masks = prediction["masks"]
|
|
|
|
masks = masks > 0.5
|
|
|
|
scores = prediction["scores"].tolist()
|
|
labels = prediction["labels"].tolist()
|
|
|
|
rles = [
|
|
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks
|
|
]
|
|
for rle in rles:
|
|
rle["counts"] = rle["counts"].decode("utf-8")
|
|
|
|
coco_results.extend(
|
|
[
|
|
{
|
|
"image_id": original_id,
|
|
"category_id": labels[k],
|
|
"segmentation": rle,
|
|
"score": scores[k],
|
|
}
|
|
for k, rle in enumerate(rles)
|
|
]
|
|
)
|
|
return coco_results
|
|
|
|
def prepare_for_coco_keypoint(self, predictions):
|
|
coco_results = []
|
|
for original_id, prediction in predictions.items():
|
|
if len(prediction) == 0:
|
|
continue
|
|
|
|
boxes = prediction["boxes"]
|
|
boxes = convert_to_xywh(boxes).tolist()
|
|
scores = prediction["scores"].tolist()
|
|
labels = prediction["labels"].tolist()
|
|
keypoints = prediction["keypoints"]
|
|
keypoints = keypoints.flatten(start_dim=1).tolist()
|
|
|
|
coco_results.extend(
|
|
[
|
|
{
|
|
"image_id": original_id,
|
|
"category_id": labels[k],
|
|
"keypoints": keypoint,
|
|
"score": scores[k],
|
|
}
|
|
for k, keypoint in enumerate(keypoints)
|
|
]
|
|
)
|
|
return coco_results
|
|
|
|
|
|
def convert_to_xywh(boxes):
|
|
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
|
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
|
|
|
|
|
def merge(img_ids, eval_imgs):
|
|
all_img_ids = utils.all_gather(img_ids)
|
|
all_eval_imgs = utils.all_gather(eval_imgs)
|
|
|
|
merged_img_ids = []
|
|
for p in all_img_ids:
|
|
merged_img_ids.extend(p)
|
|
|
|
merged_eval_imgs = []
|
|
for p in all_eval_imgs:
|
|
merged_eval_imgs.append(p)
|
|
|
|
merged_img_ids = np.array(merged_img_ids)
|
|
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
|
|
|
# keep only unique (and in sorted order) images
|
|
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
|
merged_eval_imgs = merged_eval_imgs[..., idx]
|
|
|
|
return merged_img_ids, merged_eval_imgs
|
|
|
|
|
|
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
|
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
|
img_ids = list(img_ids)
|
|
eval_imgs = list(eval_imgs.flatten())
|
|
|
|
coco_eval.evalImgs = eval_imgs
|
|
coco_eval.params.imgIds = img_ids
|
|
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
|
|
|
|
|
def evaluate(imgs):
|
|
with redirect_stdout(io.StringIO()):
|
|
imgs.evaluate()
|
|
return imgs.params.imgIds, np.asarray(imgs.evalImgs).reshape(-1, len(imgs.params.areaRng), len(imgs.params.imgIds))
|