sglang_v0.5.2/vision_0.22.1/scripts/release_notes/classify_prs.py

121 lines
3.7 KiB
Python

# In[1]:
import pandas as pd
# In[2]:
data_filename = "data.json"
df = pd.read_json(data_filename).T
df.tail()
# In[3]:
all_labels = {lbl for labels in df["labels"] for lbl in labels}
all_labels
# In[4]:
# Add one column per label
for label in all_labels:
df[label] = df["labels"].apply(lambda labels_list: label in labels_list)
df.head()
# In[5]:
# Add a clean "module" column. It contains tuples since PRs can have more than one module.
# Maybe we should include "topics" in that column as well?
all_modules = { # mapping: full name -> clean name
label: "".join(label.split(" ")[1:]) for label in all_labels if label.startswith("module")
}
# We use an ugly loop, but whatever ¯\_(ツ)_/¯
df["module"] = [[] for _ in range(len(df))]
for i, row in df.iterrows():
for full_name, clean_name in all_modules.items():
if full_name in row["labels"]:
row["module"].append(clean_name)
df["module"] = df.module.apply(tuple)
df.head()
# In[6]:
mod_df = df.set_index("module").sort_index()
mod_df.tail()
# In[7]:
# All improvement PRs
mod_df[mod_df["enhancement"]].head()
# In[8]:
# improvement f module
# note: don't filter module name on the index as the index contain tuples with non-exclusive values
# Use the boolean column instead
mod_df[mod_df["enhancement"] & mod_df["module: transforms"]]
# In[9]:
def format_prs(mod_df, exclude_prototype=True):
out = []
for idx, row in mod_df.iterrows():
if exclude_prototype and "prototype" in row and row["prototype"]:
continue
modules = idx
# Put "documentation" and "tests" first for sorting to be dece
for last_module in ("documentation", "tests"):
if last_module in modules:
modules = [m for m in modules if m != last_module] + [last_module]
module = f"[{', '.join(modules)}]"
module = module.replace("referencescripts", "reference scripts")
module = module.replace("code", "reference scripts")
out.append(f"{module} {row['title']}")
return "\n".join(out)
# In[10]:
included_prs = pd.DataFrame()
# If labels are accurate, this shouhld generate most of the release notes already
# We keep track of the included PRs to figure out which ones are missing
for section_title, module_idx in (
("Backward-incompatible changes", "bc-breaking"),
("Deprecations", "deprecation"),
("New Features", "new feature"),
("Improvements", "enhancement"),
("Bug Fixes", "bug"),
("Code Quality", "code quality"),
):
if module_idx in mod_df:
print(f"## {section_title}")
print()
tmp_df = mod_df[mod_df[module_idx]]
included_prs = pd.concat([included_prs, tmp_df])
print(format_prs(tmp_df))
print()
# In[11]:
# Missing PRs are these ones... classify them manually
missing_prs = pd.concat([mod_df, included_prs]).drop_duplicates(subset="pr_number", keep=False)
print(format_prs(missing_prs))
# In[12]:
# Generate list of contributors
print()
print("## Contributors")
previous_release = "c35d3855ccbfa6a36e6ae6337a1f2c721c1f1e78"
current_release = "5181a854d8b127cf465cd22a67c1b5aaf6ccae05"
print(
f"{{ git shortlog -s {previous_release}..{current_release} | cut -f2- & git log -s {previous_release}..{current_release} | grep Co-authored | cut -f2- -d: | cut -f1 -d\\< | sed 's/^ *//;s/ *//' ; }} | sort --ignore-case | uniq | tr '\\n' ';' | sed 's/;/, /g;s/,//' | fold -s"
)
# In[13]:
# Utility to extract PR numbers only from multiple lines, useful to bundle all
# the docs changes for example:
import re
s = """
[] Remove unnecessary dependency from macOS/Conda binaries (#8077)
[rocm] [ROCm] remove HCC references (#8070)
"""
print(", ".join(re.findall("(#\\d+)", s)))