sglang_v0.5.2/vision_0.22.1/test/test_tv_tensors.py

326 lines
11 KiB
Python

from copy import deepcopy
import pytest
import torch
from common_utils import assert_equal, make_bounding_boxes, make_image, make_segmentation_mask, make_video
from PIL import Image
from torchvision import tv_tensors
@pytest.fixture(autouse=True)
def restore_tensor_return_type():
# This is for security, as we should already be restoring the default manually in each test anyway
# (at least at the time of writing...)
yield
tv_tensors.set_return_type("Tensor")
@pytest.mark.parametrize("data", [torch.rand(3, 32, 32), Image.new("RGB", (32, 32), color=123)])
def test_image_instance(data):
image = tv_tensors.Image(data)
assert isinstance(image, torch.Tensor)
assert image.ndim == 3 and image.shape[0] == 3
@pytest.mark.parametrize("data", [torch.randint(0, 10, size=(1, 32, 32)), Image.new("L", (32, 32), color=2)])
def test_mask_instance(data):
mask = tv_tensors.Mask(data)
assert isinstance(mask, torch.Tensor)
assert mask.ndim == 3 and mask.shape[0] == 1
@pytest.mark.parametrize("data", [torch.randint(0, 32, size=(5, 4)), [[0, 0, 5, 5], [2, 2, 7, 7]], [1, 2, 3, 4]])
@pytest.mark.parametrize(
"format", ["XYXY", "CXCYWH", tv_tensors.BoundingBoxFormat.XYXY, tv_tensors.BoundingBoxFormat.XYWH]
)
def test_bbox_instance(data, format):
bboxes = tv_tensors.BoundingBoxes(data, format=format, canvas_size=(32, 32))
assert isinstance(bboxes, torch.Tensor)
assert bboxes.ndim == 2 and bboxes.shape[1] == 4
if isinstance(format, str):
format = tv_tensors.BoundingBoxFormat[(format.upper())]
assert bboxes.format == format
def test_bbox_dim_error():
data_3d = [[[1, 2, 3, 4]]]
with pytest.raises(ValueError, match="Expected a 1D or 2D tensor, got 3D"):
tv_tensors.BoundingBoxes(data_3d, format="XYXY", canvas_size=(32, 32))
@pytest.mark.parametrize(
("data", "input_requires_grad", "expected_requires_grad"),
[
([[[0.0, 1.0], [0.0, 1.0]]], None, False),
([[[0.0, 1.0], [0.0, 1.0]]], False, False),
([[[0.0, 1.0], [0.0, 1.0]]], True, True),
(torch.rand(3, 16, 16, requires_grad=False), None, False),
(torch.rand(3, 16, 16, requires_grad=False), False, False),
(torch.rand(3, 16, 16, requires_grad=False), True, True),
(torch.rand(3, 16, 16, requires_grad=True), None, True),
(torch.rand(3, 16, 16, requires_grad=True), False, False),
(torch.rand(3, 16, 16, requires_grad=True), True, True),
],
)
def test_new_requires_grad(data, input_requires_grad, expected_requires_grad):
tv_tensor = tv_tensors.Image(data, requires_grad=input_requires_grad)
assert tv_tensor.requires_grad is expected_requires_grad
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
def test_isinstance(make_input):
assert isinstance(make_input(), torch.Tensor)
def test_wrapping_no_copy():
tensor = torch.rand(3, 16, 16)
image = tv_tensors.Image(tensor)
assert image.data_ptr() == tensor.data_ptr()
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
def test_to_wrapping(make_input):
dp = make_input()
dp_to = dp.to(torch.float64)
assert type(dp_to) is type(dp)
assert dp_to.dtype is torch.float64
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_to_tv_tensor_reference(make_input, return_type):
tensor = torch.rand((3, 16, 16), dtype=torch.float64)
dp = make_input()
with tv_tensors.set_return_type(return_type):
tensor_to = tensor.to(dp)
assert type(tensor_to) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
assert tensor_to.dtype is dp.dtype
assert type(tensor) is torch.Tensor
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_clone_wrapping(make_input, return_type):
dp = make_input()
with tv_tensors.set_return_type(return_type):
dp_clone = dp.clone()
assert type(dp_clone) is type(dp)
assert dp_clone.data_ptr() != dp.data_ptr()
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_requires_grad__wrapping(make_input, return_type):
dp = make_input(dtype=torch.float)
assert not dp.requires_grad
with tv_tensors.set_return_type(return_type):
dp_requires_grad = dp.requires_grad_(True)
assert type(dp_requires_grad) is type(dp)
assert dp.requires_grad
assert dp_requires_grad.requires_grad
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_detach_wrapping(make_input, return_type):
dp = make_input(dtype=torch.float).requires_grad_(True)
with tv_tensors.set_return_type(return_type):
dp_detached = dp.detach()
assert type(dp_detached) is type(dp)
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_force_subclass_with_metadata(return_type):
# Sanity checks for the ops in _FORCE_TORCHFUNCTION_SUBCLASS and tv_tensors with metadata
# Largely the same as above, we additionally check that the metadata is preserved
format, canvas_size = "XYXY", (32, 32)
bbox = tv_tensors.BoundingBoxes([[0, 0, 5, 5], [2, 2, 7, 7]], format=format, canvas_size=canvas_size)
tv_tensors.set_return_type(return_type)
bbox = bbox.clone()
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
bbox = bbox.to(torch.float64)
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
bbox = bbox.detach()
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
if torch.cuda.is_available():
bbox = bbox.pin_memory()
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
assert not bbox.requires_grad
bbox.requires_grad_(True)
if return_type == "TVTensor":
assert bbox.format, bbox.canvas_size == (format, canvas_size)
assert bbox.requires_grad
tv_tensors.set_return_type("tensor")
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_other_op_no_wrapping(make_input, return_type):
dp = make_input()
with tv_tensors.set_return_type(return_type):
# any operation besides the ones listed in _FORCE_TORCHFUNCTION_SUBCLASS will do here
output = dp * 2
assert type(output) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize(
"op",
[
lambda t: t.numpy(),
lambda t: t.tolist(),
lambda t: t.max(dim=-1),
],
)
def test_no_tensor_output_op_no_wrapping(make_input, op):
dp = make_input()
output = op(dp)
assert type(output) is not type(dp)
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
def test_inplace_op_no_wrapping(make_input, return_type):
dp = make_input()
original_type = type(dp)
with tv_tensors.set_return_type(return_type):
output = dp.add_(0)
assert type(output) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
assert type(dp) is original_type
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
def test_wrap(make_input):
dp = make_input()
# any operation besides the ones listed in _FORCE_TORCHFUNCTION_SUBCLASS will do here
output = dp * 2
dp_new = tv_tensors.wrap(output, like=dp)
assert type(dp_new) is type(dp)
assert dp_new.data_ptr() == output.data_ptr()
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("requires_grad", [False, True])
def test_deepcopy(make_input, requires_grad):
dp = make_input(dtype=torch.float)
dp.requires_grad_(requires_grad)
dp_deepcopied = deepcopy(dp)
assert dp_deepcopied is not dp
assert dp_deepcopied.data_ptr() != dp.data_ptr()
assert_equal(dp_deepcopied, dp)
assert type(dp_deepcopied) is type(dp)
assert dp_deepcopied.requires_grad is requires_grad
@pytest.mark.parametrize("make_input", [make_image, make_bounding_boxes, make_segmentation_mask, make_video])
@pytest.mark.parametrize("return_type", ["Tensor", "TVTensor"])
@pytest.mark.parametrize(
"op",
(
lambda dp: dp + torch.rand(*dp.shape),
lambda dp: torch.rand(*dp.shape) + dp,
lambda dp: dp * torch.rand(*dp.shape),
lambda dp: torch.rand(*dp.shape) * dp,
lambda dp: dp + 3,
lambda dp: 3 + dp,
lambda dp: dp + dp,
lambda dp: dp.sum(),
lambda dp: dp.reshape(-1),
lambda dp: dp.int(),
lambda dp: torch.stack([dp, dp]),
lambda dp: torch.chunk(dp, 2)[0],
lambda dp: torch.unbind(dp)[0],
),
)
def test_usual_operations(make_input, return_type, op):
dp = make_input()
with tv_tensors.set_return_type(return_type):
out = op(dp)
assert type(out) is (type(dp) if return_type == "TVTensor" else torch.Tensor)
if isinstance(dp, tv_tensors.BoundingBoxes) and return_type == "TVTensor":
assert hasattr(out, "format")
assert hasattr(out, "canvas_size")
def test_subclasses():
img = make_image()
masks = make_segmentation_mask()
with pytest.raises(TypeError, match="unsupported operand"):
img + masks
def test_set_return_type():
img = make_image()
assert type(img + 3) is torch.Tensor
with tv_tensors.set_return_type("TVTensor"):
assert type(img + 3) is tv_tensors.Image
assert type(img + 3) is torch.Tensor
tv_tensors.set_return_type("TVTensor")
assert type(img + 3) is tv_tensors.Image
with tv_tensors.set_return_type("tensor"):
assert type(img + 3) is torch.Tensor
with tv_tensors.set_return_type("TVTensor"):
assert type(img + 3) is tv_tensors.Image
tv_tensors.set_return_type("tensor")
assert type(img + 3) is torch.Tensor
assert type(img + 3) is torch.Tensor
# Exiting a context manager will restore the return type as it was prior to entering it,
# regardless of whether the "global" tv_tensors.set_return_type() was called within the context manager.
assert type(img + 3) is tv_tensors.Image
tv_tensors.set_return_type("tensor")
def test_return_type_input():
img = make_image()
# Case-insensitive
with tv_tensors.set_return_type("tvtensor"):
assert type(img + 3) is tv_tensors.Image
with pytest.raises(ValueError, match="return_type must be"):
tv_tensors.set_return_type("typo")
tv_tensors.set_return_type("tensor")