sglang_v0.5.2/vision_0.22.1/torchvision/csrc/ops/roi_pool.cpp

103 lines
3.0 KiB
C++

#include "roi_pool.h"
#include <ATen/core/dispatch/Dispatcher.h>
#include <torch/library.h>
#include <torch/types.h>
namespace vision {
namespace ops {
std::tuple<at::Tensor, at::Tensor> roi_pool(
const at::Tensor& input,
const at::Tensor& rois,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width) {
C10_LOG_API_USAGE_ONCE("torchvision.csrc.ops.roi_pool.roi_pool");
static auto op = c10::Dispatcher::singleton()
.findSchemaOrThrow("torchvision::roi_pool", "")
.typed<decltype(roi_pool)>();
return op.call(input, rois, spatial_scale, pooled_height, pooled_width);
}
std::tuple<at::Tensor, at::Tensor> roi_pool_symint(
const at::Tensor& input,
const at::Tensor& rois,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width) {
C10_LOG_API_USAGE_ONCE("torchvision.csrc.ops.roi_pool.roi_pool");
static auto op = c10::Dispatcher::singleton()
.findSchemaOrThrow("torchvision::roi_pool", "")
.typed<decltype(roi_pool_symint)>();
return op.call(input, rois, spatial_scale, pooled_height, pooled_width);
}
namespace detail {
at::Tensor _roi_pool_backward(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& argmax,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width,
int64_t batch_size,
int64_t channels,
int64_t height,
int64_t width) {
static auto op = c10::Dispatcher::singleton()
.findSchemaOrThrow("torchvision::_roi_pool_backward", "")
.typed<decltype(_roi_pool_backward)>();
return op.call(
grad,
rois,
argmax,
spatial_scale,
pooled_height,
pooled_width,
batch_size,
channels,
height,
width);
}
at::Tensor _roi_pool_backward_symint(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& argmax,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width,
c10::SymInt batch_size,
c10::SymInt channels,
c10::SymInt height,
c10::SymInt width) {
static auto op = c10::Dispatcher::singleton()
.findSchemaOrThrow("torchvision::_roi_pool_backward", "")
.typed<decltype(_roi_pool_backward_symint)>();
return op.call(
grad,
rois,
argmax,
spatial_scale,
pooled_height,
pooled_width,
batch_size,
channels,
height,
width);
}
} // namespace detail
TORCH_LIBRARY_FRAGMENT(torchvision, m) {
m.def(TORCH_SELECTIVE_SCHEMA(
"torchvision::roi_pool(Tensor input, Tensor rois, float spatial_scale, SymInt pooled_height, SymInt pooled_width) -> (Tensor, Tensor)"));
m.def(TORCH_SELECTIVE_SCHEMA(
"torchvision::_roi_pool_backward(Tensor grad, Tensor rois, Tensor argmax, float spatial_scale, SymInt pooled_height, SymInt pooled_width, SymInt batch_size, SymInt channels, SymInt height, SymInt width) -> Tensor"));
}
} // namespace ops
} // namespace vision