193 lines
3.8 KiB
ReStructuredText
193 lines
3.8 KiB
ReStructuredText
.. _datasets:
|
|
|
|
Datasets
|
|
========
|
|
|
|
Torchvision provides many built-in datasets in the ``torchvision.datasets``
|
|
module, as well as utility classes for building your own datasets.
|
|
|
|
Built-in datasets
|
|
-----------------
|
|
|
|
All datasets are subclasses of :class:`torch.utils.data.Dataset`
|
|
i.e, they have ``__getitem__`` and ``__len__`` methods implemented.
|
|
Hence, they can all be passed to a :class:`torch.utils.data.DataLoader`
|
|
which can load multiple samples in parallel using ``torch.multiprocessing`` workers.
|
|
For example: ::
|
|
|
|
imagenet_data = torchvision.datasets.ImageNet('path/to/imagenet_root/')
|
|
data_loader = torch.utils.data.DataLoader(imagenet_data,
|
|
batch_size=4,
|
|
shuffle=True,
|
|
num_workers=args.nThreads)
|
|
|
|
.. currentmodule:: torchvision.datasets
|
|
|
|
All the datasets have almost similar API. They all have two common arguments:
|
|
``transform`` and ``target_transform`` to transform the input and target respectively.
|
|
You can also create your own datasets using the provided :ref:`base classes <base_classes_datasets>`.
|
|
|
|
.. warning::
|
|
|
|
When a dataset object is created with ``download=True``, the files are first
|
|
downloaded and extracted in the root directory. This download logic is not
|
|
multi-process safe, so it may lead to conflicts / race conditions if it is
|
|
run within a distributed setting. In distributed mode, we recommend creating
|
|
a dummy dataset object to trigger the download logic *before* setting up
|
|
distributed mode.
|
|
|
|
Image classification
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
Caltech101
|
|
Caltech256
|
|
CelebA
|
|
CIFAR10
|
|
CIFAR100
|
|
Country211
|
|
DTD
|
|
EMNIST
|
|
EuroSAT
|
|
FakeData
|
|
FashionMNIST
|
|
FER2013
|
|
FGVCAircraft
|
|
Flickr8k
|
|
Flickr30k
|
|
Flowers102
|
|
Food101
|
|
GTSRB
|
|
INaturalist
|
|
ImageNet
|
|
Imagenette
|
|
KMNIST
|
|
LFWPeople
|
|
LSUN
|
|
MNIST
|
|
Omniglot
|
|
OxfordIIITPet
|
|
Places365
|
|
PCAM
|
|
QMNIST
|
|
RenderedSST2
|
|
SEMEION
|
|
SBU
|
|
StanfordCars
|
|
STL10
|
|
SUN397
|
|
SVHN
|
|
USPS
|
|
|
|
Image detection or segmentation
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
CocoDetection
|
|
CelebA
|
|
Cityscapes
|
|
Kitti
|
|
OxfordIIITPet
|
|
SBDataset
|
|
VOCSegmentation
|
|
VOCDetection
|
|
WIDERFace
|
|
|
|
Optical Flow
|
|
~~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
FlyingChairs
|
|
FlyingThings3D
|
|
HD1K
|
|
KittiFlow
|
|
Sintel
|
|
|
|
Stereo Matching
|
|
~~~~~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
CarlaStereo
|
|
Kitti2012Stereo
|
|
Kitti2015Stereo
|
|
CREStereo
|
|
FallingThingsStereo
|
|
SceneFlowStereo
|
|
SintelStereo
|
|
InStereo2k
|
|
ETH3DStereo
|
|
Middlebury2014Stereo
|
|
|
|
Image pairs
|
|
~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
LFWPairs
|
|
PhotoTour
|
|
|
|
Image captioning
|
|
~~~~~~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
CocoCaptions
|
|
|
|
Video classification
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
HMDB51
|
|
Kinetics
|
|
UCF101
|
|
|
|
Video prediction
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class_dataset.rst
|
|
|
|
MovingMNIST
|
|
|
|
.. _base_classes_datasets:
|
|
|
|
Base classes for custom datasets
|
|
--------------------------------
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: class.rst
|
|
|
|
DatasetFolder
|
|
ImageFolder
|
|
VisionDataset
|
|
|
|
Transforms v2
|
|
-------------
|
|
|
|
.. autosummary::
|
|
:toctree: generated/
|
|
:template: function.rst
|
|
|
|
wrap_dataset_for_transforms_v2
|