sglang_v0.5.2/vision_0.23.0/test/test_datasets_download.py

389 lines
11 KiB
Python

import contextlib
import itertools
import shutil
import tempfile
import time
import traceback
import unittest.mock
import warnings
from datetime import datetime
from os import path
from urllib.error import HTTPError, URLError
from urllib.parse import urlparse
from urllib.request import Request, urlopen
import pytest
from torchvision import datasets
from torchvision.datasets.utils import _get_redirect_url, USER_AGENT
def limit_requests_per_time(min_secs_between_requests=2.0):
last_requests = {}
def outer_wrapper(fn):
def inner_wrapper(request, *args, **kwargs):
url = request.full_url if isinstance(request, Request) else request
netloc = urlparse(url).netloc
last_request = last_requests.get(netloc)
if last_request is not None:
elapsed_secs = (datetime.now() - last_request).total_seconds()
delta = min_secs_between_requests - elapsed_secs
if delta > 0:
time.sleep(delta)
response = fn(request, *args, **kwargs)
last_requests[netloc] = datetime.now()
return response
return inner_wrapper
return outer_wrapper
urlopen = limit_requests_per_time()(urlopen)
def resolve_redirects(max_hops=3):
def outer_wrapper(fn):
def inner_wrapper(request, *args, **kwargs):
initial_url = request.full_url if isinstance(request, Request) else request
url = _get_redirect_url(initial_url, max_hops=max_hops)
if url == initial_url:
return fn(request, *args, **kwargs)
warnings.warn(f"The URL {initial_url} ultimately redirects to {url}.")
if not isinstance(request, Request):
return fn(url, *args, **kwargs)
request_attrs = {
attr: getattr(request, attr) for attr in ("data", "headers", "origin_req_host", "unverifiable")
}
# the 'method' attribute does only exist if the request was created with it
if hasattr(request, "method"):
request_attrs["method"] = request.method
return fn(Request(url, **request_attrs), *args, **kwargs)
return inner_wrapper
return outer_wrapper
urlopen = resolve_redirects()(urlopen)
@contextlib.contextmanager
def log_download_attempts(
urls,
*,
dataset_module,
):
def maybe_add_mock(*, module, name, stack, lst=None):
patcher = unittest.mock.patch(f"torchvision.datasets.{module}.{name}")
try:
mock = stack.enter_context(patcher)
except AttributeError:
return
if lst is not None:
lst.append(mock)
with contextlib.ExitStack() as stack:
download_url_mocks = []
download_file_from_google_drive_mocks = []
for module in [dataset_module, "utils"]:
maybe_add_mock(module=module, name="download_url", stack=stack, lst=download_url_mocks)
maybe_add_mock(
module=module,
name="download_file_from_google_drive",
stack=stack,
lst=download_file_from_google_drive_mocks,
)
maybe_add_mock(module=module, name="extract_archive", stack=stack)
try:
yield
finally:
for download_url_mock in download_url_mocks:
for args, kwargs in download_url_mock.call_args_list:
urls.append(args[0] if args else kwargs["url"])
for download_file_from_google_drive_mock in download_file_from_google_drive_mocks:
for args, kwargs in download_file_from_google_drive_mock.call_args_list:
file_id = args[0] if args else kwargs["file_id"]
urls.append(f"https://drive.google.com/file/d/{file_id}")
def retry(fn, times=1, wait=5.0):
tbs = []
for _ in range(times + 1):
try:
return fn()
except AssertionError as error:
tbs.append("".join(traceback.format_exception(type(error), error, error.__traceback__)))
time.sleep(wait)
else:
raise AssertionError(
"\n".join(
(
"\n",
*[f"{'_' * 40} {idx:2d} {'_' * 40}\n\n{tb}" for idx, tb in enumerate(tbs, 1)],
(
f"Assertion failed {times + 1} times with {wait:.1f} seconds intermediate wait time. "
f"You can find the the full tracebacks above."
),
)
)
)
@contextlib.contextmanager
def assert_server_response_ok():
try:
yield
except HTTPError as error:
raise AssertionError(f"The server returned {error.code}: {error.reason}.") from error
except URLError as error:
raise AssertionError(
"Connection not possible due to SSL." if "SSL" in str(error) else "The request timed out."
) from error
except RecursionError as error:
raise AssertionError(str(error)) from error
def assert_url_is_accessible(url, timeout=5.0):
request = Request(url, headers={"User-Agent": USER_AGENT}, method="HEAD")
with assert_server_response_ok():
urlopen(request, timeout=timeout)
def collect_urls(dataset_cls, *args, **kwargs):
urls = []
with contextlib.suppress(Exception), log_download_attempts(
urls, dataset_module=dataset_cls.__module__.split(".")[-1]
):
dataset_cls(*args, **kwargs)
return [(url, f"{dataset_cls.__name__}, {url}") for url in urls]
# This is a workaround since fixtures, such as the built-in tmp_dir, can only be used within a test but not within a
# parametrization. Thus, we use a single root directory for all datasets and remove it when all download tests are run.
ROOT = tempfile.mkdtemp()
@pytest.fixture(scope="module", autouse=True)
def root():
yield ROOT
shutil.rmtree(ROOT)
def places365():
return itertools.chain.from_iterable(
[
collect_urls(
datasets.Places365,
ROOT,
split=split,
small=small,
download=True,
)
for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True))
]
)
def caltech101():
return collect_urls(datasets.Caltech101, ROOT, download=True)
def caltech256():
return collect_urls(datasets.Caltech256, ROOT, download=True)
def cifar10():
return collect_urls(datasets.CIFAR10, ROOT, download=True)
def cifar100():
return collect_urls(datasets.CIFAR100, ROOT, download=True)
def voc():
# TODO: Also test the "2007-test" key
return itertools.chain.from_iterable(
[
collect_urls(datasets.VOCSegmentation, ROOT, year=year, download=True)
for year in ("2007", "2008", "2009", "2010", "2011", "2012")
]
)
def mnist():
with unittest.mock.patch.object(datasets.MNIST, "mirrors", datasets.MNIST.mirrors[-1:]):
return collect_urls(datasets.MNIST, ROOT, download=True)
def fashion_mnist():
return collect_urls(datasets.FashionMNIST, ROOT, download=True)
def kmnist():
return collect_urls(datasets.KMNIST, ROOT, download=True)
def emnist():
# the 'split' argument can be any valid one, since everything is downloaded anyway
return collect_urls(datasets.EMNIST, ROOT, split="byclass", download=True)
def qmnist():
return itertools.chain.from_iterable(
[collect_urls(datasets.QMNIST, ROOT, what=what, download=True) for what in ("train", "test", "nist")]
)
def moving_mnist():
return collect_urls(datasets.MovingMNIST, ROOT, download=True)
def omniglot():
return itertools.chain.from_iterable(
[collect_urls(datasets.Omniglot, ROOT, background=background, download=True) for background in (True, False)]
)
def phototour():
return itertools.chain.from_iterable(
[
collect_urls(datasets.PhotoTour, ROOT, name=name, download=True)
# The names postfixed with '_harris' point to the domain 'matthewalunbrown.com'. For some reason all
# requests timeout from within CI. They are disabled until this is resolved.
for name in ("notredame", "yosemite", "liberty") # "notredame_harris", "yosemite_harris", "liberty_harris"
]
)
def sbdataset():
return collect_urls(datasets.SBDataset, ROOT, download=True)
def sbu():
return collect_urls(datasets.SBU, ROOT, download=True)
def semeion():
return collect_urls(datasets.SEMEION, ROOT, download=True)
def stl10():
return collect_urls(datasets.STL10, ROOT, download=True)
def svhn():
return itertools.chain.from_iterable(
[collect_urls(datasets.SVHN, ROOT, split=split, download=True) for split in ("train", "test", "extra")]
)
def usps():
return itertools.chain.from_iterable(
[collect_urls(datasets.USPS, ROOT, train=train, download=True) for train in (True, False)]
)
def celeba():
return collect_urls(datasets.CelebA, ROOT, download=True)
def widerface():
return collect_urls(datasets.WIDERFace, ROOT, download=True)
def kinetics():
return itertools.chain.from_iterable(
[
collect_urls(
datasets.Kinetics,
path.join(ROOT, f"Kinetics{num_classes}"),
frames_per_clip=1,
num_classes=num_classes,
split=split,
download=True,
)
for num_classes, split in itertools.product(("400", "600", "700"), ("train", "val"))
]
)
def kitti():
return itertools.chain.from_iterable(
[collect_urls(datasets.Kitti, ROOT, train=train, download=True) for train in (True, False)]
)
def url_parametrization(*dataset_urls_and_ids_fns):
return pytest.mark.parametrize(
"url",
[
pytest.param(url, id=id)
for dataset_urls_and_ids_fn in dataset_urls_and_ids_fns
for url, id in sorted(set(dataset_urls_and_ids_fn()))
],
)
@url_parametrization(
caltech101,
caltech256,
cifar10,
cifar100,
# The VOC download server is unstable. See https://github.com/pytorch/vision/issues/2953 for details.
# voc,
mnist,
fashion_mnist,
kmnist,
emnist,
qmnist,
omniglot,
phototour,
sbdataset,
semeion,
stl10,
svhn,
usps,
celeba,
widerface,
kinetics,
kitti,
places365,
sbu,
)
def test_url_is_accessible(url):
"""
If you see this test failing, find the offending dataset in the parametrization and move it to
``test_url_is_not_accessible`` and link an issue detailing the problem.
"""
retry(lambda: assert_url_is_accessible(url))
# TODO: if e.g. caltech101 starts failing, remove the pytest.mark.parametrize below and use
# @url_parametrization(caltech101)
@pytest.mark.parametrize("url", ("http://url_that_doesnt_exist.com",)) # here until we actually have a failing dataset
@pytest.mark.xfail
def test_url_is_not_accessible(url):
"""
As the name implies, this test is the 'inverse' of ``test_url_is_accessible``. Since the download servers are
beyond our control, some files might not be accessible for longer stretches of time. Still, we want to know if they
come back up, or if we need to remove the download functionality of the dataset for good.
If you see this test failing, find the offending dataset in the parametrization and move it to
``test_url_is_accessible``.
"""
assert_url_is_accessible(url)