sglang_v0.5.2/vision_0.22.1/test/test_transforms_video.py

179 lines
6.2 KiB
Python

import random
import warnings
import numpy as np
import pytest
import torch
from common_utils import assert_equal
from torchvision.transforms import Compose
try:
from scipy import stats
except ImportError:
stats = None
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
import torchvision.transforms._transforms_video as transforms
class TestVideoTransforms:
def test_random_crop_video(self):
numFrames = random.randint(4, 128)
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) // 2) * 2
owidth = random.randint(5, (width - 2) // 2) * 2
clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
result = Compose(
[
transforms.ToTensorVideo(),
transforms.RandomCropVideo((oheight, owidth)),
]
)(clip)
assert result.size(2) == oheight
assert result.size(3) == owidth
transforms.RandomCropVideo((oheight, owidth)).__repr__()
def test_random_resized_crop_video(self):
numFrames = random.randint(4, 128)
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) // 2) * 2
owidth = random.randint(5, (width - 2) // 2) * 2
clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
result = Compose(
[
transforms.ToTensorVideo(),
transforms.RandomResizedCropVideo((oheight, owidth)),
]
)(clip)
assert result.size(2) == oheight
assert result.size(3) == owidth
transforms.RandomResizedCropVideo((oheight, owidth)).__repr__()
def test_center_crop_video(self):
numFrames = random.randint(4, 128)
height = random.randint(10, 32) * 2
width = random.randint(10, 32) * 2
oheight = random.randint(5, (height - 2) // 2) * 2
owidth = random.randint(5, (width - 2) // 2) * 2
clip = torch.ones((numFrames, height, width, 3), dtype=torch.uint8) * 255
oh1 = (height - oheight) // 2
ow1 = (width - owidth) // 2
clipNarrow = clip[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth, :]
clipNarrow.fill_(0)
result = Compose(
[
transforms.ToTensorVideo(),
transforms.CenterCropVideo((oheight, owidth)),
]
)(clip)
msg = (
"height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
)
assert result.sum().item() == 0, msg
oheight += 1
owidth += 1
result = Compose(
[
transforms.ToTensorVideo(),
transforms.CenterCropVideo((oheight, owidth)),
]
)(clip)
sum1 = result.sum()
msg = (
"height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
)
assert sum1.item() > 1, msg
oheight += 1
owidth += 1
result = Compose(
[
transforms.ToTensorVideo(),
transforms.CenterCropVideo((oheight, owidth)),
]
)(clip)
sum2 = result.sum()
msg = (
"height: " + str(height) + " width: " + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
)
assert sum2.item() > 1, msg
assert sum2.item() > sum1.item(), msg
@pytest.mark.skipif(stats is None, reason="scipy.stats is not available")
@pytest.mark.parametrize("channels", [1, 3])
def test_normalize_video(self, channels):
def samples_from_standard_normal(tensor):
p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
return p_value > 0.0001
random_state = random.getstate()
random.seed(42)
numFrames = random.randint(4, 128)
height = random.randint(32, 256)
width = random.randint(32, 256)
mean = random.random()
std = random.random()
clip = torch.normal(mean, std, size=(channels, numFrames, height, width))
mean = [clip[c].mean().item() for c in range(channels)]
std = [clip[c].std().item() for c in range(channels)]
normalized = transforms.NormalizeVideo(mean, std)(clip)
assert samples_from_standard_normal(normalized)
random.setstate(random_state)
# Checking the optional in-place behaviour
tensor = torch.rand((3, 128, 16, 16))
tensor_inplace = transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)(tensor)
assert_equal(tensor, tensor_inplace)
transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True).__repr__()
def test_to_tensor_video(self):
numFrames, height, width = 64, 4, 4
trans = transforms.ToTensorVideo()
with pytest.raises(TypeError):
np_rng = np.random.RandomState(0)
trans(np_rng.rand(numFrames, height, width, 1).tolist())
with pytest.raises(TypeError):
trans(torch.rand((numFrames, height, width, 1), dtype=torch.float))
with pytest.raises(ValueError):
trans(torch.ones((3, numFrames, height, width, 3), dtype=torch.uint8))
with pytest.raises(ValueError):
trans(torch.ones((height, width, 3), dtype=torch.uint8))
with pytest.raises(ValueError):
trans(torch.ones((width, 3), dtype=torch.uint8))
with pytest.raises(ValueError):
trans(torch.ones((3), dtype=torch.uint8))
trans.__repr__()
@pytest.mark.parametrize("p", (0, 1))
def test_random_horizontal_flip_video(self, p):
clip = torch.rand((3, 4, 112, 112), dtype=torch.float)
hclip = clip.flip(-1)
out = transforms.RandomHorizontalFlipVideo(p=p)(clip)
if p == 0:
torch.testing.assert_close(out, clip)
elif p == 1:
torch.testing.assert_close(out, hclip)
transforms.RandomHorizontalFlipVideo().__repr__()
if __name__ == "__main__":
pytest.main([__file__])