446 lines
15 KiB
Python
446 lines
15 KiB
Python
import asyncio
|
|
import itertools
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
DEFAULT_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_MODEL_NAME_FOR_TEST_FP8,
|
|
DEFAULT_MOE_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST,
|
|
CustomTestCase,
|
|
is_in_amd_ci,
|
|
is_in_ci,
|
|
run_bench_serving,
|
|
write_github_step_summary,
|
|
)
|
|
|
|
|
|
class TestBenchServing(CustomTestCase):
|
|
def test_offline_throughput_default(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
num_prompts=500,
|
|
request_rate=float("inf"),
|
|
other_server_args=[],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_offline_throughput_default\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 3050)
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 3800)
|
|
|
|
def test_offline_throughput_non_stream_small_batch_size(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
num_prompts=200,
|
|
request_rate=float("inf"),
|
|
other_server_args=["--max-running-requests", "10"],
|
|
dataset_name="sharegpt",
|
|
random_input_len=None,
|
|
random_output_len=None,
|
|
disable_stream=True,
|
|
need_warmup=True,
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_offline_throughput_non_stream_small_batch_size\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 1000)
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 1050)
|
|
|
|
def test_offline_throughput_without_radix_cache(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
num_prompts=500,
|
|
request_rate=float("inf"),
|
|
other_server_args=["--disable-radix-cache"],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_offline_throughput_without_radix_cache\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 3050)
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 3800)
|
|
|
|
def test_offline_throughput_without_chunked_prefill(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
num_prompts=500,
|
|
request_rate=float("inf"),
|
|
other_server_args=["--chunked-prefill-size", "-1"],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_offline_throughput_without_chunked_prefill\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
self.assertGreater(res["output_throughput"], 2600)
|
|
|
|
def test_offline_throughput_with_triton_attention_backend(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
num_prompts=500,
|
|
request_rate=float("inf"),
|
|
other_server_args=[
|
|
"--attention-backend",
|
|
"triton",
|
|
"--context-length",
|
|
"8192",
|
|
],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_offline_throughput_with_triton_attention_backend\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 3500)
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 3700)
|
|
|
|
def test_offline_throughput_default_fp8(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST_FP8,
|
|
num_prompts=500,
|
|
request_rate=float("inf"),
|
|
other_server_args=[],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_offline_throughput_default_fp8\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 3500)
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 4300)
|
|
|
|
def test_online_latency_default(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
num_prompts=100,
|
|
request_rate=1,
|
|
other_server_args=[],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_online_latency_default\n"
|
|
f"median_e2e_latency_ms: {res['median_e2e_latency_ms']:.2f} ms\n"
|
|
)
|
|
self.assertLess(res["median_e2e_latency_ms"], 11000)
|
|
if is_in_amd_ci():
|
|
self.assertLess(res["median_ttft_ms"], 115)
|
|
else:
|
|
self.assertLess(res["median_ttft_ms"], 86)
|
|
self.assertLess(res["median_itl_ms"], 10)
|
|
|
|
def test_vlm_offline_throughput(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST,
|
|
num_prompts=200,
|
|
request_rate=float("inf"),
|
|
other_server_args=[
|
|
"--mem-fraction-static",
|
|
"0.7",
|
|
],
|
|
dataset_name="mmmu",
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_vlm_offline_throughput\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 2000)
|
|
# TODO: not set yet, need AMD machine
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 2500)
|
|
|
|
def test_vlm_online_latency(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST,
|
|
num_prompts=250,
|
|
request_rate=1,
|
|
other_server_args=[
|
|
"--mem-fraction-static",
|
|
"0.7",
|
|
],
|
|
dataset_name="mmmu",
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_vlm_online_latency\n"
|
|
f"median_e2e_latency_ms: {res['median_e2e_latency_ms']:.2f} ms\n"
|
|
)
|
|
self.assertLess(res["median_e2e_latency_ms"], 16500)
|
|
if is_in_amd_ci():
|
|
self.assertLess(res["median_ttft_ms"], 150)
|
|
# TODO: not set yet, need AMD machine
|
|
else:
|
|
self.assertLess(res["median_ttft_ms"], 100)
|
|
self.assertLess(res["median_itl_ms"], 8)
|
|
|
|
def test_lora_online_latency(self):
|
|
# TODO (lifuhuang): verify LoRA support in AMD.
|
|
if is_in_amd_ci():
|
|
pass
|
|
|
|
res = self._run_lora_latency_test(enable_background_task=False)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_lora_online_latency\n"
|
|
f"median_e2e_latency_ms: {res['median_e2e_latency_ms']:.2f} ms\n"
|
|
f"median_ttft_ms: {res['median_ttft_ms']:.2f} ms\n"
|
|
)
|
|
self.assertLess(res["median_e2e_latency_ms"], 2400)
|
|
self.assertLess(res["median_ttft_ms"], 58)
|
|
|
|
def test_lora_online_latency_with_concurrent_adapter_updates(self):
|
|
# TODO (lifuhuang): verify LoRA support in AMD.
|
|
if is_in_amd_ci():
|
|
pass
|
|
|
|
res = self._run_lora_latency_test(enable_background_task=True)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_lora_online_latency\n"
|
|
f"median_e2e_latency_ms: {res['median_e2e_latency_ms']:.2f} ms\n"
|
|
f"median_ttft_ms: {res['median_ttft_ms']:.2f} ms\n"
|
|
)
|
|
self.assertLess(res["median_e2e_latency_ms"], 4000)
|
|
self.assertLess(res["median_ttft_ms"], 80)
|
|
|
|
def _run_lora_latency_test(self, enable_background_task: bool):
|
|
"""
|
|
Run a latency test for LoRA with the specified background task setting.
|
|
"""
|
|
|
|
async def lora_loader_unloader_task(
|
|
base_url: str,
|
|
start_event: asyncio.Event,
|
|
stop_event: asyncio.Event,
|
|
):
|
|
"""
|
|
A background task that repeatedly loads and unloads a LoRA adapter.
|
|
"""
|
|
await start_event.wait()
|
|
|
|
path_cycler = itertools.cycle(
|
|
[
|
|
"pbevan11/llama-3.1-8b-ocr-correction",
|
|
"faridlazuarda/valadapt-llama-3.1-8B-it-chinese",
|
|
"philschmid/code-llama-3-1-8b-text-to-sql-lora",
|
|
]
|
|
)
|
|
load_url = f"{base_url}/load_lora_adapter"
|
|
unload_url = f"{base_url}/unload_lora_adapter"
|
|
num_updates = 0
|
|
|
|
while not stop_event.is_set():
|
|
# 1. Load the LoRA adapter
|
|
lora_path = next(path_cycler)
|
|
response = await asyncio.to_thread(
|
|
requests.post,
|
|
load_url,
|
|
json={"lora_name": lora_path, "lora_path": lora_path},
|
|
)
|
|
self.assertTrue(
|
|
response.ok, f"Failed to load LoRA adapter: {response.text}"
|
|
)
|
|
num_updates += 1
|
|
|
|
if stop_event.is_set():
|
|
break
|
|
|
|
# Yield control to allow other tasks to run.
|
|
await asyncio.sleep(1)
|
|
|
|
# 2. Unload the LoRA adapter
|
|
response = await asyncio.to_thread(
|
|
requests.post,
|
|
unload_url,
|
|
json={"lora_name": lora_path},
|
|
)
|
|
self.assertTrue(
|
|
response.ok, f"Failed to unload LoRA adapter: {response.text}"
|
|
)
|
|
num_updates += 1
|
|
|
|
# Yield control to allow other tasks to run.
|
|
await asyncio.sleep(1)
|
|
|
|
background_task = lora_loader_unloader_task if enable_background_task else None
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
num_prompts=400,
|
|
request_rate=8,
|
|
other_server_args=[
|
|
"--enable-lora",
|
|
"--max-loras-per-batch",
|
|
"1",
|
|
"--disable-radix-cache",
|
|
"--random-seed",
|
|
"42",
|
|
"--mem-fraction-static",
|
|
"0.8",
|
|
"--lora-paths",
|
|
"Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16",
|
|
"--max-lora-rank",
|
|
"256",
|
|
],
|
|
dataset_name="random",
|
|
random_input_len=256,
|
|
random_output_len=256,
|
|
lora_name=["Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16"],
|
|
background_task=background_task,
|
|
)
|
|
|
|
return res
|
|
|
|
def test_online_latency_eagle(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
num_prompts=300,
|
|
request_rate=8,
|
|
sharegpt_context_len=3072,
|
|
disable_ignore_eos=True,
|
|
dataset_name="sharegpt",
|
|
other_server_args=[
|
|
"--speculative-algorithm",
|
|
"EAGLE",
|
|
"--speculative-draft-model-path",
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
"--speculative-num-steps",
|
|
"5",
|
|
"--speculative-eagle-topk",
|
|
"4",
|
|
"--speculative-num-draft-tokens",
|
|
"16",
|
|
"--mem-fraction-static",
|
|
"0.7",
|
|
],
|
|
need_warmup=True,
|
|
seed=42,
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_online_latency_eagle\n"
|
|
f"median_e2e_latency_ms: {res['median_e2e_latency_ms']:.2f} ms\n"
|
|
f"accept_length: {res['accept_length']:.2f} \n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertLess(res["median_e2e_latency_ms"], 1800)
|
|
else:
|
|
self.assertLess(res["median_e2e_latency_ms"], 900)
|
|
self.assertGreater(res["accept_length"], 3.0)
|
|
|
|
def test_moe_offline_throughput_default(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MOE_MODEL_NAME_FOR_TEST,
|
|
num_prompts=300,
|
|
request_rate=float("inf"),
|
|
other_server_args=["--tp", "2"],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_moe_offline_throughput_default\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 2100)
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 2200)
|
|
|
|
def test_moe_offline_throughput_without_radix_cache(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MOE_MODEL_NAME_FOR_TEST,
|
|
num_prompts=300,
|
|
request_rate=float("inf"),
|
|
other_server_args=["--tp", "2", "--disable-radix-cache"],
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_moe_offline_throughput_without_radix_cache\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
if is_in_amd_ci():
|
|
self.assertGreater(res["output_throughput"], 2100)
|
|
else:
|
|
self.assertGreater(res["output_throughput"], 2200)
|
|
|
|
def test_pp_offline_throughput_default_decode(self):
|
|
res = run_bench_serving(
|
|
model=DEFAULT_MOE_MODEL_NAME_FOR_TEST,
|
|
num_prompts=1000,
|
|
request_rate=float("inf"),
|
|
random_input_len=1,
|
|
random_output_len=1024,
|
|
other_server_args=["--pp", "2"],
|
|
need_warmup=True,
|
|
seed=42,
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_pp_offline_throughput_default_decode\n"
|
|
f"Output throughput: {res['output_throughput']:.2f} token/s\n"
|
|
)
|
|
self.assertGreater(res["output_throughput"], 6700)
|
|
|
|
def test_pp_long_context_prefill(self):
|
|
res = run_bench_serving(
|
|
model="meta-llama/Llama-3.3-70B-Instruct",
|
|
num_prompts=4,
|
|
request_rate=float("inf"),
|
|
random_input_len=128000,
|
|
random_output_len=1,
|
|
dataset_name="random",
|
|
other_server_args=[
|
|
"--quantization",
|
|
"fp8",
|
|
"--pp",
|
|
2,
|
|
],
|
|
need_warmup=False,
|
|
seed=42,
|
|
)
|
|
|
|
if is_in_ci():
|
|
write_github_step_summary(
|
|
f"### test_pp_long_context_latency_prefill\n"
|
|
f"input_throughput: {res['input_throughput']:.2f} ms\n"
|
|
)
|
|
self.assertGreater(res["input_throughput"], 4000)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|