sglang_v0.5.2/sglang/sgl-kernel/python/sgl_kernel/utils.py

51 lines
1.5 KiB
Python

# Copyright 2025 SGLang Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import functools
from typing import Dict, Tuple
import torch
def get_cuda_stream() -> int:
return torch.cuda.current_stream().cuda_stream
_cache_buf: Dict[Tuple[str, torch.device], torch.Tensor] = {}
def _get_cache_buf(name: str, bytes: int, device: torch.device) -> torch.Tensor:
key = (name, device)
buf = _cache_buf.get(key)
if buf is None:
buf = torch.empty(bytes, dtype=torch.uint8, device=device)
_cache_buf[key] = buf
return buf
def _to_tensor_scalar_tuple(x):
if isinstance(x, torch.Tensor):
return (x, 0)
else:
return (None, x)
@functools.lru_cache(maxsize=1)
def is_arch_support_pdl() -> bool:
# Hopper arch's compute capability == 9.0
device = torch.cuda.current_device()
major, minor = torch.cuda.get_device_capability(device)
return major >= 9