sglang_v0.5.2/sglang/sgl-kernel/python/sgl_kernel/sampling.py

544 lines
21 KiB
Python

from typing import Optional, Union
import torch
from sgl_kernel.utils import _to_tensor_scalar_tuple
def _top_k_renorm_probs_internal(
probs: torch.Tensor,
maybe_top_k_arr: Optional[torch.Tensor],
top_k_val: int,
) -> torch.Tensor:
probs = probs.float()
maybe_top_k_arr = maybe_top_k_arr.int() if maybe_top_k_arr is not None else None
renorm_probs = torch.empty_like(probs)
torch.ops.sgl_kernel.top_k_renorm_probs.default(
probs, renorm_probs, maybe_top_k_arr, top_k_val
)
return renorm_probs
def top_k_renorm_probs(
probs: torch.Tensor,
top_k: Union[torch.Tensor, int],
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for renormalizing probabilities by top-k thresholding.
Parameters
----------
probs: torch.Tensor
Probabilities, shape ``(batch_size, num_classes)``.
top_k: Union[torch.Tensor, int]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the top-k threshold for for
for re-normalizing probabilities, should be in ``(0, num_classes)``.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
We keep the top-k probabilities, set the rest to zero, and renormalize the probabilities.
Returns
-------
renorm_probs: torch.Tensor
Renormalized probabilities, shape ``(batch_size, num_classes)``.
Note
----
This combination of ``top_k_renorm_probs`` and ``sampling_from_probs`` should be equivalent to
``top_k_sampling_from_probs``.
"""
return _top_k_renorm_probs_internal(probs, *_to_tensor_scalar_tuple(top_k))
top_k_renorm_prob = top_k_renorm_probs
def _top_p_renorm_probs_internal(
probs: torch.Tensor,
maybe_top_p_arr: Optional[torch.Tensor],
top_p_val: float,
) -> torch.Tensor:
probs = probs.float()
maybe_top_p_arr = maybe_top_p_arr.float() if maybe_top_p_arr is not None else None
renorm_probs = torch.empty_like(probs)
torch.ops.sgl_kernel.top_p_renorm_probs.default(
probs, renorm_probs, maybe_top_p_arr, top_p_val
)
return renorm_probs
def top_p_renorm_probs(
probs: torch.Tensor,
top_p: Union[torch.Tensor, float],
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for renormalizing probabilities by top-p thresholding.
Parameters
----------
probs: torch.Tensor
Probabilities, shape ``(batch_size, num_classes)``.
top_p: Union[torch.Tensor, float]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the top-p threshold for for
re-normalizing probabilities, should be in ``(0, 1)``.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
We mask out the probabilities less than `threshold` where the cumulative sum
of ``probs[probs >= threshold]`` is `top_p`, and renormalize the probabilities.
Returns
-------
renorm_probs: torch.Tensor
Renormalized probabilities, shape ``(batch_size, num_classes)``.
Note
----
This combination of ``top_p_renorm_probs`` and ``sampling_from_probs`` should be equivalent to
``top_p_sampling_from_probs``.
"""
return _top_p_renorm_probs_internal(probs, *_to_tensor_scalar_tuple(top_p))
top_p_renorm_prob = top_p_renorm_probs
def _top_p_sampling_from_probs_internal(
probs: torch.Tensor,
indices: Optional[torch.Tensor],
maybe_top_p_arr: Optional[torch.Tensor],
top_p_val: float,
deterministic: bool,
generator: Optional[torch.Generator],
) -> torch.Tensor:
with probs.device as device:
probs = probs.float()
maybe_top_p_arr = (
maybe_top_p_arr.float() if maybe_top_p_arr is not None else None
)
samples = torch.empty(probs.size(0), dtype=torch.int32, device=device)
torch.ops.sgl_kernel.top_p_sampling_from_probs.default(
probs,
samples,
indices,
maybe_top_p_arr,
top_p_val,
deterministic,
generator,
)
return samples
def top_p_sampling_from_probs(
probs: torch.Tensor,
top_p: Union[torch.Tensor, float],
indices: Optional[torch.Tensor] = None,
deterministic: bool = True,
generator: Optional[torch.Generator] = None,
check_nan: bool = False,
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for top-p sampling (nucleus sampling) from probabilities,
this operator implements GPU-based rejection sampling without explicit sorting.
Check the `blog post <https://flashinfer.ai/2025/03/10/sampling.html>`_ for more details.
The multiple rounds of rejection sampling are implemented in a single CUDA kernel,
which is more efficient than the naive implementation that launches a series of kernels.
Parameters
----------
probs: torch.Tensor
Probabilities for sampling. When indices is not provided, shape should be ``(batch_size, num_classes)``
and the i-th output will be sampled from the i-th row of probabilities. When indices is provided,
shape should be ``(unique_batch_size, num_classes)`` where unique_batch_size is the number of unique
probability distributions.
top_p: Union[torch.Tensor, float]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the threshold for top-p sampling.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
indices: Optional[torch.Tensor]
Optional indices tensor of shape ``(batch_size,)`` that maps each output to a row in probs.
For example, if indices[i] = j, then the i-th output will be sampled from probs[j].
This allows reusing the same probability distribution for multiple outputs.
If indices is not provided, the i-th output will be sampled from the i-th row of probs.
deterministic: bool
Whether to use deterministic kernel implementation, default is ``True``.
generator: Optional[torch.Generator]
A random number generator for the operation.
check_nan: bool
Whether to check nan in :attr:`probs`, default is ``False``.
Returns
-------
samples: torch.Tensor
Sampled categories, shape ``(batch_size,)``.
Note
----
This function expects float32 inputs, and the output is int32.
"""
if check_nan:
if torch.any(torch.isnan(probs)):
raise ValueError("Input probs contains NaN.")
return _top_p_sampling_from_probs_internal(
probs, indices, *_to_tensor_scalar_tuple(top_p), deterministic, generator
)
def _top_k_top_p_sampling_from_probs_internal(
probs: torch.Tensor,
indices: Optional[torch.Tensor],
maybe_top_k_arr: Optional[torch.Tensor],
top_k_val: int,
maybe_top_p_arr: Optional[torch.Tensor],
top_p_val: float,
deterministic: bool,
generator: Optional[torch.Generator],
) -> torch.Tensor:
with probs.device as device:
probs = probs.float()
maybe_top_k_arr = maybe_top_k_arr.int() if maybe_top_k_arr is not None else None
maybe_top_p_arr = (
maybe_top_p_arr.float() if maybe_top_p_arr is not None else None
)
samples = torch.empty(probs.size(0), dtype=torch.int32, device=device)
torch.ops.sgl_kernel.top_k_top_p_sampling_from_probs.default(
probs,
samples,
indices,
maybe_top_k_arr,
top_k_val,
maybe_top_p_arr,
top_p_val,
deterministic,
generator,
)
return samples
def top_k_top_p_sampling_from_probs(
probs: torch.Tensor,
top_k: Union[torch.Tensor, int],
top_p: Union[torch.Tensor, float],
indices: Optional[torch.Tensor] = None,
filter_apply_order: str = "top_k_first",
deterministic: bool = True,
generator: Optional[torch.Generator] = None,
check_nan: bool = False,
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for top-k and top-p sampling from probabilities,
this operator implements GPU-based rejection sampling without explicit sorting.
Check the `blog post <https://flashinfer.ai/2025/03/10/sampling.html>`_ for more details.
The multiple rounds of rejection sampling are implemented in a single CUDA kernel,
which is more efficient than the naive implementation that launches a series of kernels.
Parameters
----------
probs: torch.Tensor
Probabilities for sampling. When indices is not provided, shape should be ``(batch_size, num_classes)``
and the i-th output will be sampled from the i-th row of probabilities. When indices is provided,
shape should be ``(unique_batch_size, num_classes)`` where unique_batch_size is the number of unique
probability distributions.
top_k: Union[torch.Tensor, int]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the threshold for top-k sampling.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
top_p: Union[torch.Tensor, float]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the threshold for top-p sampling.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
indices: Optional[torch.Tensor]
Optional indices tensor of shape ``(batch_size,)`` that maps each output to a row in probs.
For example, if indices[i] = j, then the i-th output will be sampled from probs[j].
This allows reusing the same probability distribution for multiple outputs.
If indices is not provided, the i-th output will be sampled from the i-th row of probs.
filter_apply_order: str
The order of applying top-k and top-p sampling, should be either ``"top_k_first"`` or ``"joint"``.
If ``"top_k_first"``, we first apply top-k filter, then apply top-p sampling on the top-k results.
If ``"joint"``, we apply top-k and top-p filter simultaneously in each round. Default is ``"top_k_first"``.
deterministic: bool
Whether to use deterministic kernel implementation, default is ``True``.
generator: Optional[torch.Generator]
A random number generator for the operation.
check_nan: bool
Whether to check nan in :attr:`probs`, default is ``False``.
Returns
-------
samples: torch.Tensor
Sampled categories, shape ``(batch_size,)``.
Note
----
This function expects float32 inputs, and the output is int32.
"""
if filter_apply_order == "top_k_first":
renorm_probs = top_k_renorm_probs(probs, top_k)
return top_p_sampling_from_probs(
renorm_probs,
top_p,
indices,
deterministic,
check_nan=check_nan,
generator=generator,
)
elif filter_apply_order == "joint":
if check_nan:
if torch.any(torch.isnan(probs)):
raise ValueError("Input probs contains NaN.")
return _top_k_top_p_sampling_from_probs_internal(
probs,
indices,
*_to_tensor_scalar_tuple(top_k),
*_to_tensor_scalar_tuple(top_p),
deterministic,
generator,
)
else:
raise ValueError(f"Invalid filter_apply_order: {filter_apply_order}")
def _min_p_sampling_from_probs_internal(
probs: torch.Tensor,
indices: Optional[torch.Tensor],
maybe_min_p_arr: Optional[torch.Tensor],
min_p_val: float,
deterministic: bool,
generator: Optional[torch.Generator],
) -> torch.Tensor:
with probs.device as device:
probs = probs.float()
maybe_min_p_arr = (
maybe_min_p_arr.float() if maybe_min_p_arr is not None else None
)
samples = torch.empty(probs.size(0), dtype=torch.int32, device=device)
torch.ops.sgl_kernel.min_p_sampling_from_probs.default(
probs,
samples,
indices,
maybe_min_p_arr,
min_p_val,
deterministic,
generator,
)
return samples
def min_p_sampling_from_probs(
probs: torch.Tensor,
min_p: Union[torch.Tensor, float],
indices: Optional[torch.Tensor] = None,
deterministic: bool = True,
generator: Optional[torch.Generator] = None,
check_nan: bool = False,
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for `min_p sampling <https://arxiv.org/abs/2407.01082>`_ from probabilities,
this operator implements GPU-based rejection sampling without explicit sorting.
Check the `blog post <https://flashinfer.ai/2025/03/10/sampling.html>`_ for more details.
The multiple rounds of rejection sampling are implemented in a single CUDA kernel,
which is more efficient than the naive implementation that launches a series of kernels.
Parameters
----------
probs: torch.Tensor
Probabilities for sampling. When indices is not provided, shape should be ``(batch_size, num_classes)``
and the i-th output will be sampled from the i-th row of probabilities. When indices is provided,
shape should be ``(unique_batch_size, num_classes)`` where unique_batch_size is the number of unique
probability distributions.
min_p: Union[torch.Tensor, float]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the threshold for min-p sampling.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
indices: Optional[torch.Tensor]
Optional indices tensor of shape ``(batch_size,)`` that maps each output to a row in probs.
For example, if indices[i] = j, then the i-th output will be sampled from probs[j].
This allows reusing the same probability distribution for multiple outputs.
If indices is not provided, the i-th output will be sampled from the i-th row of probs.
deterministic: bool
Whether to use deterministic kernel implementation, default is ``True``.
generator: Optional[torch.Generator]
A random number generator for the operation.
check_nan: bool
Whether to check nan in :attr:`probs`, default is ``False``.
Returns
-------
samples: torch.Tensor
Sampled categories, shape ``(batch_size,)``.
Note
----
This function expects float32 inputs, and the output is int32.
"""
if check_nan:
if torch.any(torch.isnan(probs)):
raise ValueError("Input probs contains NaN.")
return _min_p_sampling_from_probs_internal(
probs, indices, *_to_tensor_scalar_tuple(min_p), deterministic, generator
)
def _top_k_mask_logits_internal(
logits: torch.Tensor,
maybe_top_k_arr: Optional[torch.Tensor],
top_k_val: int,
) -> torch.Tensor:
logits = logits.float()
maybe_top_k_arr = maybe_top_k_arr.int() if maybe_top_k_arr is not None else None
mask_logits = torch.empty_like(logits)
torch.ops.sgl_kernel.top_k_mask_logits.default(
logits, mask_logits, maybe_top_k_arr, top_k_val
)
return mask_logits
def top_k_mask_logits(
logits: torch.Tensor,
top_k: Union[torch.Tensor, int],
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for masking logits by top-k thresholding.
Parameters
----------
logits: torch.Tensor
Logits before softmax, shape ``(batch_size, num_classes)``.
top_k: Union[torch.Tensor, int]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the top-k threshold for for
for masking logits, should be in ``(0, num_classes)``.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
We keep the top-k logits, set the rest to negative infinity.
Returns
-------
masked_logits: torch.Tensor
Masked logits, shape ``(batch_size, num_classes)``.
Examples
--------
>>> import torch
>>> import flashinfer
>>> torch.manual_seed(42)
>>> batch_size = 4
>>> vocab_size = 5
>>> top_k = 3
>>> logits = torch.randn(batch_size, vocab_size).to(0)
>>> logits
tensor([[ 1.9269, 1.4873, 0.9007, -2.1055, -0.7581],
[ 1.0783, 0.8008, 1.6806, 0.3559, -0.6866],
[-0.4934, 0.2415, -0.2316, 0.0418, -0.2516],
[ 0.8599, -0.3097, -0.3957, 0.8034, -0.6216]], device='cuda:0')
>>> masked_logits = flashinfer.sampling.top_k_mask_logits(logits, top_k)
>>> masked_logits
tensor([[ 1.9269, 1.4873, 0.9007, -inf, -inf],
[ 1.0783, 0.8008, 1.6806, -inf, -inf],
[ -inf, 0.2415, -0.2316, 0.0418, -inf],
[ 0.8599, -0.3097, -inf, 0.8034, -inf]], device='cuda:0')
Note
----
The combination of ``top_k_mask_logits`` and ``softmax`` should be equivalent to ``top_k_renorm_probs``.
See Also
--------
top_k_renorm_probs
"""
return _top_k_mask_logits_internal(logits, *_to_tensor_scalar_tuple(top_k))
def top_k_top_p_sampling_from_logits(
logits: torch.Tensor,
top_k: Union[torch.Tensor, int],
top_p: Union[torch.Tensor, float],
indices: Optional[torch.Tensor] = None,
filter_apply_order: str = "top_k_first",
deterministic: bool = True,
generator: Optional[torch.Generator] = None,
check_nan: bool = False,
) -> torch.Tensor:
r"""Adapt from https://github.com/flashinfer-ai/flashinfer/flashinfer/sampling.py
Fused GPU kernel for top-k and top-p sampling from probabilities,
this operator implements GPU-based rejection sampling without explicit sorting.
Check the `blog post <https://flashinfer.ai/2025/03/10/sampling.html>`_ for more details.
The multiple rounds of rejection sampling are implemented in a single CUDA kernel,
which is more efficient than the naive implementation that launches a series of kernels.
Parameters
----------
logits: torch.Tensor
Pre-softmax logits for sampling. When indices is not provided, shape should be ``(batch_size, num_classes)``
and the i-th output will be sampled from the i-th row of logits. When indices is provided,
shape should be ``(unique_batch_size, num_classes)`` where unique_batch_size is the number of unique
probability distributions.
top_k: Union[torch.Tensor, int]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the threshold for top-k sampling.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
top_p: Union[torch.Tensor, float]
Either a scalar or a tensor of shape ``(batch_size,)``, representing the threshold for top-p sampling.
If a scalar, the same threshold is used for all requests.
If a tensor, each request has its own threshold.
indices: Optional[torch.Tensor]
Optional indices tensor of shape ``(batch_size,)`` that maps each output to a row in probs.
For example, if indices[i] = j, then the i-th output will be sampled from probs[j].
This allows reusing the same probability distribution for multiple outputs.
If indices is not provided, the i-th output will be sampled from the i-th row of probs.
filter_apply_order: str
The order of applying top-k and top-p sampling, should be either ``"top_k_first"`` or ``"joint"``.
If ``"top_k_first"``, we first apply top-k filter, then apply top-p sampling on the top-k results.
If ``"joint"``, we apply top-k and top-p filter simultaneously in each round. Default is ``"top_k_first"``.
deterministic: bool
Whether to use deterministic kernel implementation, default is ``True``.
generator: Optional[torch.Generator]
A random number generator for the operation.
check_nan: bool
Whether to check nan in :attr:`probs`, default is ``False``.
Returns
-------
samples: torch.Tensor
Sampled categories, shape ``(batch_size,)``.
Note
----
This function expects float32 inputs, and the output is int32.
"""
if filter_apply_order == "top_k_first":
masked_logits = top_k_mask_logits(logits, top_k)
probs = torch.softmax(masked_logits, dim=-1)
return top_p_sampling_from_probs(
probs,
top_p,
indices,
deterministic,
check_nan=check_nan,
generator=generator,
)
elif filter_apply_order == "joint":
probs = torch.softmax(logits, dim=-1)
if check_nan:
if torch.any(torch.isnan(probs)):
raise ValueError("Input probs contains NaN.")
return _top_k_top_p_sampling_from_probs_internal(
probs,
indices,
*_to_tensor_scalar_tuple(top_k),
*_to_tensor_scalar_tuple(top_p),
deterministic,
generator,
)
else:
raise ValueError(f"Invalid filter_apply_order: {filter_apply_order}")