200 lines
8.0 KiB
Plaintext
200 lines
8.0 KiB
Plaintext
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <ATen/cuda/EmptyTensor.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "flashinfer/gemm/cutlass_gemm_configs.h"
|
|
#include "flashinfer/gemm/fp4_gemm_cutlass.h"
|
|
#include "flashinfer/gemm/fp4_gemm_cutlass_template.h"
|
|
#include "pytorch_extension_utils.h"
|
|
|
|
using flashinfer::gemm::ClusterShape;
|
|
using flashinfer::gemm::CutlassFp4GemmRunner;
|
|
using flashinfer::gemm::CutlassFp4GemmRunnerInterface;
|
|
using flashinfer::gemm::CutlassGemmConfig;
|
|
using flashinfer::gemm::CutlassTileConfigSM100;
|
|
using flashinfer::gemm::EpilogueScheduleType;
|
|
using flashinfer::gemm::FP4GemmType;
|
|
using flashinfer::gemm::MainloopScheduleType;
|
|
|
|
namespace flashinfer {
|
|
namespace gemm {
|
|
template class CutlassFp4GemmRunner<__nv_bfloat16, FP4GemmType::W4A4_NVFP4_NVFP4>;
|
|
template class CutlassFp4GemmRunner<half, FP4GemmType::W4A4_NVFP4_NVFP4>;
|
|
} // namespace gemm
|
|
} // namespace flashinfer
|
|
|
|
namespace torch_ext {
|
|
|
|
namespace {
|
|
|
|
CutlassGemmConfig getFp4GemmConfig(int64_t m, int64_t n, int64_t k, int64_t tactic) {
|
|
auto getCutlassFp4GemmConfigs = []() {
|
|
CutlassFp4GemmRunner<__nv_bfloat16, FP4GemmType::W4A4_NVFP4_NVFP4> gemmRunner;
|
|
return gemmRunner.getConfigs();
|
|
};
|
|
static std::vector<CutlassGemmConfig> globalConfigs = getCutlassFp4GemmConfigs();
|
|
TORCH_CHECK(tactic >= 0 && tactic < globalConfigs.size(), "tactic must be between 0 and ",
|
|
globalConfigs.size());
|
|
return globalConfigs[tactic];
|
|
}
|
|
|
|
template <typename T>
|
|
void runGemm(at::Tensor& out, at::Tensor const& mat1, at::Tensor const& mat2,
|
|
at::Tensor const& mat1Scale, at::Tensor const& mat2Scale,
|
|
at::Tensor const& globalScale, int64_t m, int64_t n, int64_t k, int64_t batch_count,
|
|
CutlassGemmConfig const& gemmConfig, at::Tensor workspace_buffer) {
|
|
CutlassFp4GemmRunner<T, FP4GemmType::W4A4_NVFP4_NVFP4> gemmRunner;
|
|
|
|
int64_t const required_workspace_size = gemmRunner.getWorkspaceSize(m, n, k, batch_count);
|
|
int64_t const provided_workspace_size =
|
|
workspace_buffer.numel() * workspace_buffer.element_size();
|
|
|
|
auto runKernel = [&](void* workspace) {
|
|
gemmRunner.gemm(out.data_ptr(), mat1.const_data_ptr(), mat2.const_data_ptr(),
|
|
mat1Scale.const_data_ptr(), mat2Scale.const_data_ptr(),
|
|
globalScale.data_ptr<float>(), m, n, k, batch_count, gemmConfig,
|
|
reinterpret_cast<char*>(workspace), required_workspace_size,
|
|
at::cuda::getCurrentCUDAStream(mat1.get_device()));
|
|
};
|
|
|
|
if (provided_workspace_size < required_workspace_size) {
|
|
at::Tensor new_workspace = at::detail::empty_cuda(
|
|
{required_workspace_size}, at::ScalarType::Char, mat1.device(), std::nullopt);
|
|
|
|
runKernel(new_workspace.data_ptr());
|
|
} else {
|
|
runKernel(workspace_buffer.data_ptr());
|
|
}
|
|
}
|
|
|
|
constexpr auto FLOAT4_E2M1X2 = at::ScalarType::Byte; // uint8_t
|
|
constexpr auto SF_DTYPE = at::ScalarType::Byte; // uint8_t
|
|
|
|
// mat1: [B, M, K / 2], FLOAT4_E2M1X2 or [B, M, K], FLOAT8_E4M3FN
|
|
// mat2: [B, N, K / 2], FLOAT4_E2M1X2
|
|
// out: [B, M, N], fp16/bf16/fp32
|
|
// mat1Scale: ceil(M / 128) * 128 * ceil(K / sfVecSize / 4) * 4, SF_DTYPE (UE4M3 or UE8M0)
|
|
// mat2Scale: ceil(N / 128) * 128 * ceil(K / sfVecSize / 4) * 4, SF_DTYPE (UE4M3 or UE8M0)
|
|
// globalScale: [1], 1 / (((448 * 6) / mat1.abs().max()) * ((448 * 6) / mat2.abs().max()))
|
|
// B = 1 for GEMM op as a special case
|
|
at::Tensor fp4_bmm_impl(at::Tensor const& mat1, at::Tensor const& mat2, at::Tensor const& mat1Scale,
|
|
at::Tensor const& mat2Scale, at::Tensor const& globalScale, at::Tensor out,
|
|
at::Tensor workspace_buffer, int64_t tactic) {
|
|
CHECK_INPUT_AND_TYPE(mat1, FLOAT4_E2M1X2);
|
|
CHECK_INPUT_AND_TYPE(mat2, FLOAT4_E2M1X2);
|
|
|
|
int mat2_k_scale = 1;
|
|
|
|
CHECK_INPUT_AND_TYPE(mat1Scale, SF_DTYPE);
|
|
CHECK_INPUT_AND_TYPE(mat2Scale, SF_DTYPE);
|
|
|
|
CHECK_INPUT_AND_TYPE(globalScale, at::ScalarType::Float);
|
|
|
|
int64_t m, n, k, b;
|
|
if (mat1.dim() == 2) {
|
|
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix");
|
|
TORCH_CHECK(mat1.sizes()[1] == mat2.sizes()[1] * mat2_k_scale,
|
|
"mat1 and mat2 shapes cannot be multiplied (", mat1.sizes()[0], "x",
|
|
mat1.sizes()[1], " and ", mat2.sizes()[0], "x", mat2.sizes()[1], ")");
|
|
m = mat1.sizes()[0];
|
|
n = mat2.sizes()[0];
|
|
k = mat2.sizes()[1] * 2;
|
|
b = 1;
|
|
} else if (mat1.dim() == 3) {
|
|
TORCH_CHECK(mat2.dim() == 3, "mat2 must be a batch of matrices");
|
|
TORCH_CHECK(mat1.sizes()[0] == mat2.sizes()[0], "mat1 and mat2 must have the same batch size (",
|
|
mat1.sizes()[0], " and ", mat2.sizes()[0], ")");
|
|
TORCH_CHECK(mat1.sizes()[2] == mat2.sizes()[2] * mat2_k_scale,
|
|
"mat1 and mat2 shapes cannot be multiplied (", mat1.sizes()[1], "x",
|
|
mat1.sizes()[2], " and ", mat2.sizes()[1], "x", mat2.sizes()[2], ")");
|
|
m = mat1.sizes()[1];
|
|
n = mat2.sizes()[1];
|
|
k = mat2.sizes()[2] * 2;
|
|
b = mat1.sizes()[0];
|
|
} else {
|
|
C10_THROW_ERROR(NotImplementedError, "mat1 must be a matrix or a batch of matrices");
|
|
}
|
|
|
|
// No heuristic for now, we rely on the autotuner to select the best tactic.
|
|
if (tactic == -1) {
|
|
tactic = 0;
|
|
}
|
|
auto config = getFp4GemmConfig(m, n, k, tactic);
|
|
|
|
constexpr int alignment = 32;
|
|
TORCH_CHECK(k % alignment == 0, "Expected k to be divisible by ", alignment,
|
|
", but got mat1 shape: (", mat1.sizes()[0], "x", mat1.sizes()[1], "), k: ", k, ".");
|
|
TORCH_CHECK(n % alignment == 0, "Expected n to be divisible by ", alignment,
|
|
", but got mat2 shape: (", mat2.sizes()[0], "x", mat2.sizes()[1], ").");
|
|
|
|
// Validate out dimensions
|
|
std::vector<int64_t> out_shape =
|
|
mat1.dim() == 2 ? std::vector<int64_t>{m, n} : std::vector<int64_t>{b, m, n};
|
|
TORCH_CHECK(out.dim() == out_shape.size(), "out must have ", out_shape.size(),
|
|
" dimensions, but got ", out.dim());
|
|
for (int i = 0; i < out_shape.size(); ++i) {
|
|
TORCH_CHECK(out.sizes()[i] == out_shape[i], "out shape mismatch at dimension ", i,
|
|
": expected ", out_shape[i], ", got ", out.sizes()[i]);
|
|
}
|
|
|
|
c10::ScalarType out_dtype = out.scalar_type();
|
|
|
|
switch (out_dtype) {
|
|
case at::ScalarType::Half:
|
|
runGemm<half>(out, mat1, mat2, mat1Scale, mat2Scale, globalScale, m, n, k, b, config,
|
|
workspace_buffer);
|
|
break;
|
|
case at::ScalarType::BFloat16:
|
|
runGemm<__nv_bfloat16>(out, mat1, mat2, mat1Scale, mat2Scale, globalScale, m, n, k, b, config,
|
|
workspace_buffer);
|
|
break;
|
|
default:
|
|
TORCH_CHECK(false, "out_dtype must be one of fp16/bf16.");
|
|
}
|
|
return out;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
at::Tensor fp4_gemm(at::Tensor const& mat1, at::Tensor const& mat2, at::Tensor const& mat1Scale,
|
|
at::Tensor const& mat2Scale, at::Tensor const& globalScale, at::Tensor out,
|
|
at::Tensor workspace_buffer, int64_t tactic) {
|
|
return fp4_bmm_impl(mat1, mat2, mat1Scale, mat2Scale, globalScale, out, workspace_buffer, tactic);
|
|
}
|
|
|
|
int64_t fp4_gemm_tactic_num() {
|
|
auto getCutlassConfigs = []() {
|
|
CutlassFp4GemmRunner<__nv_bfloat16, FP4GemmType::W4A4_NVFP4_NVFP4> gemmRunner;
|
|
return gemmRunner.getConfigs();
|
|
};
|
|
static int64_t totalTactics = getCutlassConfigs().size();
|
|
return totalTactics;
|
|
}
|
|
|
|
} // namespace torch_ext
|
|
|
|
TORCH_LIBRARY_FRAGMENT(TORCH_EXTENSION_NAME, m) {
|
|
m.def("fp4_gemm", &torch_ext::fp4_gemm);
|
|
m.def("fp4_gemm_tactic_num", &torch_ext::fp4_gemm_tactic_num);
|
|
}
|