sglang_v0.5.2/flashinfer_0.3.1/flashinfer/jit/cutlass_gemm/cutlass_library.py

1465 lines
53 KiB
Python

#################################################################################################
#
# Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Data types and tags used for emitting CUTLASS C++ kernels
"""
import enum
import re
# The following block implements enum.auto() for Python 3.5 variants that don't include it such
# as the default 3.5.2 on Ubuntu 16.04.
#
# https://codereview.stackexchange.com/questions/177309/reimplementing-pythons-enum-auto-for-compatibility
try:
from enum import auto as enum_auto
except ImportError:
__cutlass_library_auto_enum = 0
def enum_auto() -> int: # type: ignore[no-redef]
global __cutlass_library_auto_enum
i = __cutlass_library_auto_enum
__cutlass_library_auto_enum += 1
return i
###################################################################################################
#
class GeneratorTarget(enum.Enum):
Library = enum_auto()
#
GeneratorTargetNames = {GeneratorTarget.Library: "library"}
#
###################################################################################################
#
class DataType(enum.Enum):
void = enum_auto() # primarily used to disable C tensor for epilogues
b1 = enum_auto()
u2 = enum_auto()
u4 = enum_auto()
u8 = enum_auto()
u16 = enum_auto()
u32 = enum_auto()
u64 = enum_auto()
s2 = enum_auto()
s4 = enum_auto()
s8 = enum_auto()
s16 = enum_auto()
s32 = enum_auto()
s64 = enum_auto()
e4m3 = enum_auto()
e5m2 = enum_auto()
f8 = enum_auto()
f6 = enum_auto()
f4 = enum_auto()
e3m2 = enum_auto()
e2m3 = enum_auto()
e2m1 = enum_auto()
ue8m0 = enum_auto()
ue4m3 = enum_auto()
f16 = enum_auto()
bf16 = enum_auto()
f32 = enum_auto()
tf32 = enum_auto()
f64 = enum_auto()
cf16 = enum_auto()
cbf16 = enum_auto()
cf32 = enum_auto()
ctf32 = enum_auto()
cf64 = enum_auto()
cs2 = enum_auto()
cs4 = enum_auto()
cs8 = enum_auto()
cs16 = enum_auto()
cs32 = enum_auto()
cs64 = enum_auto()
cu2 = enum_auto()
cu4 = enum_auto()
cu8 = enum_auto()
cu16 = enum_auto()
cu32 = enum_auto()
cu64 = enum_auto()
invalid = enum_auto()
#
ShortDataTypeNames = {
DataType.s32: "i",
DataType.e4m3: "e4m3",
DataType.e5m2: "e5m2",
DataType.f16: "h",
DataType.f32: "s",
DataType.f64: "d",
DataType.cf32: "c",
DataType.cf64: "z",
DataType.f8: "f8",
DataType.f6: "f6",
DataType.f4: "f4",
}
#
DataTypeNames = {
DataType.void: "void",
DataType.b1: "b1",
DataType.u2: "u2",
DataType.u4: "u4",
DataType.u8: "u8",
DataType.u16: "u16",
DataType.u32: "u32",
DataType.u64: "u64",
DataType.s2: "s2",
DataType.s4: "s4",
DataType.s8: "s8",
DataType.s16: "s16",
DataType.s32: "s32",
DataType.s64: "s64",
DataType.e4m3: "e4m3",
DataType.e5m2: "e5m2",
DataType.f8: "f8",
DataType.f6: "f6",
DataType.f4: "f4",
DataType.e2m3: "e2m3",
DataType.e3m2: "e3m2",
DataType.e2m1: "e2m1",
DataType.ue8m0: "ue8m0",
DataType.ue4m3: "ue4m3",
DataType.f16: "f16",
DataType.bf16: "bf16",
DataType.f32: "f32",
DataType.tf32: "tf32",
DataType.f64: "f64",
DataType.cf16: "cf16",
DataType.cbf16: "cbf16",
DataType.cf32: "cf32",
DataType.ctf32: "ctf32",
DataType.cf64: "cf64",
DataType.cu2: "cu2",
DataType.cu4: "cu4",
DataType.cu8: "cu8",
DataType.cu16: "cu16",
DataType.cu32: "cu32",
DataType.cu64: "cu64",
DataType.cs2: "cs2",
DataType.cs4: "cs4",
DataType.cs8: "cs8",
DataType.cs16: "cs16",
DataType.cs32: "cs32",
DataType.cs64: "cs64",
}
DataTypeTag = {
DataType.void: "void",
DataType.b1: "cutlass::uint1b_t",
DataType.u2: "cutlass::uint2b_t",
DataType.u4: "cutlass::uint4b_t",
DataType.u8: "uint8_t",
DataType.u16: "uint16_t",
DataType.u32: "uint32_t",
DataType.u64: "uint64_t",
DataType.s2: "cutlass::int2b_t",
DataType.s4: "cutlass::int4b_t",
DataType.s8: "int8_t",
DataType.s16: "int16_t",
DataType.s32: "int32_t",
DataType.s64: "int64_t",
DataType.e4m3: "cutlass::float_e4m3_t",
DataType.e5m2: "cutlass::float_e5m2_t",
DataType.f8: "cutlass::type_erased_dynamic_float8_t",
DataType.f6: "cutlass::type_erased_dynamic_float6_t",
DataType.f4: "cutlass::type_erased_dynamic_float4_t",
DataType.e2m3: "cutlass::float_e2m3_t",
DataType.e3m2: "cutlass::float_e3m2_t",
DataType.e2m1: "cutlass::float_e2m1_t",
DataType.ue8m0: "cutlass::float_ue8m0_t",
DataType.ue4m3: "cutlass::float_ue4m3_t",
DataType.f16: "cutlass::half_t",
DataType.bf16: "cutlass::bfloat16_t",
DataType.f32: "float",
DataType.tf32: "cutlass::tfloat32_t",
DataType.f64: "double",
DataType.cf16: "cutlass::complex<cutlass::half_t>",
DataType.cbf16: "cutlass::complex<cutlass::bfloat16_t>",
DataType.cf32: "cutlass::complex<float>",
DataType.ctf32: "cutlass::complex<cutlass::tfloat32_t>",
DataType.cf64: "cutlass::complex<double>",
DataType.cu2: "cutlass::complex<cutlass::uint2b_t>",
DataType.cu4: "cutlass::complex<cutlass::uint4b_t>",
DataType.cu8: "cutlass::complex<cutlass::uint8_t>",
DataType.cu16: "cutlass::complex<cutlass::uint16_t>",
DataType.cu32: "cutlass::complex<cutlass::uint32_t>",
DataType.cu64: "cutlass::complex<cutlass::uint64_t>",
DataType.cs2: "cutlass::complex<cutlass::int2b_t>",
DataType.cs4: "cutlass::complex<cutlass::int4b_t>",
DataType.cs8: "cutlass::complex<cutlass::int8_t>",
DataType.cs16: "cutlass::complex<cutlass::int16_t>",
DataType.cs32: "cutlass::complex<cutlass::int32_t>",
DataType.cs64: "cutlass::complex<cutlass::int64_t>",
}
DataTypeSize = {
DataType.void: 0,
DataType.b1: 1,
DataType.u2: 2,
DataType.u4: 4,
DataType.u8: 8,
DataType.u16: 16,
DataType.u32: 32,
DataType.u64: 64,
DataType.s2: 2,
DataType.s4: 4,
DataType.s8: 8,
DataType.s16: 16,
DataType.s32: 32,
DataType.s64: 64,
DataType.e4m3: 8,
DataType.e5m2: 8,
DataType.f8: 8,
DataType.f6: 6,
DataType.f4: 4,
DataType.e2m3: 6,
DataType.e3m2: 6,
DataType.e2m1: 4,
DataType.ue8m0: 8,
DataType.ue4m3: 8,
DataType.f16: 16,
DataType.bf16: 16,
DataType.f32: 32,
DataType.tf32: 32,
DataType.f64: 64,
DataType.cf16: 32,
DataType.cbf16: 32,
DataType.cf32: 64,
DataType.ctf32: 32,
DataType.cf64: 128,
DataType.cu2: 4,
DataType.cu4: 8,
DataType.cu8: 16,
DataType.cu16: 32,
DataType.cu32: 64,
DataType.cu64: 128,
DataType.cs2: 4,
DataType.cs4: 8,
DataType.cs8: 16,
DataType.cs16: 32,
DataType.cs32: 64,
DataType.cs64: 128,
}
###################################################################################################
#
class BlasMode(enum.Enum):
symmetric = enum_auto()
hermitian = enum_auto()
#
BlasModeTag = {
BlasMode.symmetric: "cutlass::BlasMode::kSymmetric",
BlasMode.hermitian: "cutlass::BlasMode::kHermitian",
}
#
class ComplexTransform(enum.Enum):
none = enum_auto()
conj = enum_auto()
#
ComplexTransformTag = {
ComplexTransform.none: "cutlass::ComplexTransform::kNone",
ComplexTransform.conj: "cutlass::ComplexTransform::kConjugate",
}
# Used for cutlass3x complex kernel collective mainloop builder instantiation
ComplexTransformTag3x = {
ComplexTransform.none: "cute::identity",
ComplexTransform.conj: "cute::conjugate",
}
#
RealComplexBijection = [
(DataType.f16, DataType.cf16),
(DataType.f32, DataType.cf32),
(DataType.f64, DataType.cf64),
]
#
def is_complex(data_type):
return any(data_type == c for _r, c in RealComplexBijection)
def is_block_scaled(gemm_kind):
return gemm_kind in (
GemmKind.BlockScaledUniversal3x,
GemmKind.GroupedBlockScaledUniversal3x,
)
def is_blockwise(gemm_kind):
return gemm_kind in (
GemmKind.BlockwiseUniversal3x,
GemmKind.GroupedBlockwiseUniversal3x,
)
def is_grouped(gemm_kind):
return gemm_kind in (
GemmKind.GroupedUniversal3x,
GemmKind.GroupedBlockScaledUniversal3x,
GemmKind.GroupedBlockwiseUniversal3x,
)
#
def get_complex_from_real(real_type):
for r, c in RealComplexBijection:
if real_type == r:
return c
return DataType.invalid
#
def get_real_from_complex(complex_type):
for r, c in RealComplexBijection:
if complex_type == c:
return r
return DataType.invalid
# TMA requires an alignment of 128 bits for all data types
def get_tma_alignment(data_type):
if data_type == DataType.void:
return 0
elif DataTypeSize[data_type] == 6:
return 128 # 96B alignment for 16U6 format
else:
return 128 // DataTypeSize[data_type]
#
class ComplexMultiplyOp(enum.Enum):
multiply_add = enum_auto()
gaussian = enum_auto()
###################################################################################################
#
class MathOperation(enum.Enum):
multiply_add = enum_auto()
multiply_add_saturate = enum_auto()
multiply_add_mixed_input_upcast = enum_auto()
xor_popc = enum_auto()
and_popc = enum_auto()
multiply_add_fast_bf16 = enum_auto()
multiply_add_fast_f16 = enum_auto()
multiply_add_fast_f32 = enum_auto()
multiply_add_complex_fast_f32 = enum_auto()
multiply_add_complex = enum_auto()
multiply_add_complex_gaussian = enum_auto()
multiply_add_fast_accum = enum_auto()
#
MathOperationTag = {
MathOperation.multiply_add: "cutlass::arch::OpMultiplyAdd",
MathOperation.multiply_add_saturate: "cutlass::arch::OpMultiplyAddSaturate",
MathOperation.multiply_add_mixed_input_upcast: "cutlass::arch::OpMultiplyAddMixedInputUpcast",
MathOperation.xor_popc: "cutlass::arch::OpXorPopc",
MathOperation.and_popc: "cutlass::arch::OpAndPopc",
MathOperation.multiply_add_fast_bf16: "cutlass::arch::OpMultiplyAddFastBF16",
MathOperation.multiply_add_fast_f16: "cutlass::arch::OpMultiplyAddFastF16",
MathOperation.multiply_add_fast_f32: "cutlass::arch::OpMultiplyAddFastF32",
MathOperation.multiply_add_complex_fast_f32: "cutlass::arch::OpMultiplyAddComplexFastF32",
MathOperation.multiply_add_complex: "cutlass::arch::OpMultiplyAddComplex",
MathOperation.multiply_add_complex_gaussian: "cutlass::arch::OpMultiplyAddGaussianComplex",
MathOperation.multiply_add_fast_accum: "cutlass::arch::OpMultiplyAddFastAccum",
}
###################################################################################################
#
class LayoutType(enum.Enum):
ColumnMajor = enum_auto()
RowMajor = enum_auto()
ColumnMajorInterleaved2 = enum_auto()
RowMajorInterleaved2 = enum_auto()
ColumnMajorInterleaved32 = enum_auto()
RowMajorInterleaved32 = enum_auto()
ColumnMajorInterleaved64 = enum_auto()
RowMajorInterleaved64 = enum_auto()
TensorNWC = enum_auto()
TensorNHWC = enum_auto()
TensorNDHWC = enum_auto()
TensorNCHW = enum_auto()
TensorNGHWC = enum_auto()
TensorNC32HW32 = enum_auto()
TensorNC64HW64 = enum_auto()
TensorC32RSK32 = enum_auto()
TensorC64RSK64 = enum_auto()
TensorKCS = enum_auto()
TensorKCSR = enum_auto()
TensorKCSRT = enum_auto()
#
LayoutTag = {
LayoutType.ColumnMajor: "cutlass::layout::ColumnMajor",
LayoutType.RowMajor: "cutlass::layout::RowMajor",
LayoutType.ColumnMajorInterleaved2: "cutlass::layout::ColumnMajorInterleaved<2>",
LayoutType.RowMajorInterleaved2: "cutlass::layout::RowMajorInterleaved<2>",
LayoutType.ColumnMajorInterleaved32: "cutlass::layout::ColumnMajorInterleaved<32>",
LayoutType.RowMajorInterleaved32: "cutlass::layout::RowMajorInterleaved<32>",
LayoutType.ColumnMajorInterleaved64: "cutlass::layout::ColumnMajorInterleaved<64>",
LayoutType.RowMajorInterleaved64: "cutlass::layout::RowMajorInterleaved<64>",
LayoutType.TensorNWC: "cutlass::layout::TensorNWC",
LayoutType.TensorNHWC: "cutlass::layout::TensorNHWC",
LayoutType.TensorNDHWC: "cutlass::layout::TensorNDHWC",
LayoutType.TensorNCHW: "cutlass::layout::TensorNCHW",
LayoutType.TensorNGHWC: "cutlass::layout::TensorNGHWC",
LayoutType.TensorNC32HW32: "cutlass::layout::TensorNCxHWx<32>",
LayoutType.TensorC32RSK32: "cutlass::layout::TensorCxRSKx<32>",
LayoutType.TensorNC64HW64: "cutlass::layout::TensorNCxHWx<64>",
LayoutType.TensorC64RSK64: "cutlass::layout::TensorCxRSKx<64>",
LayoutType.TensorKCS: "cutlass::layout::TensorKCS",
LayoutType.TensorKCSR: "cutlass::layout::TensorKCSR",
LayoutType.TensorKCSRT: "cutlass::layout::TensorKCSRT",
}
#
TransposedLayout = {
LayoutType.ColumnMajor: LayoutType.RowMajor,
LayoutType.RowMajor: LayoutType.ColumnMajor,
LayoutType.ColumnMajorInterleaved2: LayoutType.RowMajorInterleaved2,
LayoutType.RowMajorInterleaved2: LayoutType.ColumnMajorInterleaved2,
LayoutType.ColumnMajorInterleaved32: LayoutType.RowMajorInterleaved32,
LayoutType.RowMajorInterleaved32: LayoutType.ColumnMajorInterleaved32,
LayoutType.ColumnMajorInterleaved64: LayoutType.RowMajorInterleaved64,
LayoutType.RowMajorInterleaved64: LayoutType.ColumnMajorInterleaved64,
LayoutType.TensorNHWC: LayoutType.TensorNHWC,
}
#
ShortLayoutTypeNames = {
LayoutType.ColumnMajor: "n",
LayoutType.ColumnMajorInterleaved2: "n2",
LayoutType.ColumnMajorInterleaved32: "n32",
LayoutType.ColumnMajorInterleaved64: "n64",
LayoutType.RowMajor: "t",
LayoutType.RowMajorInterleaved2: "t2",
LayoutType.RowMajorInterleaved32: "t32",
LayoutType.RowMajorInterleaved64: "t64",
LayoutType.TensorNWC: "nwc",
LayoutType.TensorNHWC: "nhwc",
LayoutType.TensorNDHWC: "ndhwc",
LayoutType.TensorNCHW: "nchw",
LayoutType.TensorNGHWC: "nghwc",
LayoutType.TensorNC32HW32: "nc32hw32",
LayoutType.TensorNC64HW64: "nc64hw64",
LayoutType.TensorC32RSK32: "c32rsk32",
LayoutType.TensorC64RSK64: "c64rsk64",
LayoutType.TensorKCS: "kcs",
LayoutType.TensorKCSR: "kcsr",
LayoutType.TensorKCSRT: "kcsrt",
}
#
ShortComplexLayoutNames = {
(LayoutType.ColumnMajor, ComplexTransform.none): "n",
(LayoutType.ColumnMajor, ComplexTransform.conj): "c",
(LayoutType.RowMajor, ComplexTransform.none): "t",
(LayoutType.RowMajor, ComplexTransform.conj): "h",
}
###################################################################################################
class KernelScheduleType(enum.Enum):
ScheduleAuto = enum_auto()
Multistage = enum_auto()
CpAsyncWarpSpecialized = enum_auto()
CpAsyncWarpSpecializedPingpong = enum_auto()
CpAsyncWarpSpecializedCooperative = enum_auto()
Tma = enum_auto()
TmaWarpSpecialized = enum_auto()
TmaWarpSpecializedPingpong = enum_auto()
TmaWarpSpecializedCooperative = enum_auto()
TmaWarpSpecializedFP8FastAccum = enum_auto()
TmaWarpSpecializedCooperativeFP8FastAccum = enum_auto()
TmaWarpSpecializedPingpongFP8FastAccum = enum_auto()
ImplicitTmaWarpSpecializedSm90 = enum_auto()
PtrArrayTmaWarpSpecializedCooperative = enum_auto()
PtrArrayTmaWarpSpecializedCooperativeFP8FastAccum = enum_auto()
PtrArrayTmaWarpSpecializedPingpong = enum_auto()
PtrArrayTmaWarpSpecializedPingpongFP8FastAccum = enum_auto()
BlockwiseTmaWarpSpecializedCooperative = enum_auto()
PtrArrayBlockwiseTmaWarpSpecializedCooperative = enum_auto()
TmaWarpSpecialized1SmSm100 = enum_auto()
TmaWarpSpecialized2SmSm100 = enum_auto()
ImplicitTmaWarpSpecialized1SmSm100 = enum_auto()
ImplicitTmaWarpSpecialized2SmSm100 = enum_auto()
PtrArrayTmaWarpSpecialized1SmSm100 = enum_auto()
PtrArrayTmaWarpSpecialized2SmSm100 = enum_auto()
PtrArrayTmaWarpSpecialized1SmBlockScaledSm100 = enum_auto()
PtrArrayTmaWarpSpecialized2SmBlockScaledSm100 = enum_auto()
PtrArrayNvf4TmaWarpSpecialized1SmSm100 = enum_auto()
PtrArrayNvf4TmaWarpSpecialized2SmSm100 = enum_auto()
PtrArrayMxf4TmaWarpSpecialized1SmSm100 = enum_auto()
PtrArrayMxf4TmaWarpSpecialized2SmSm100 = enum_auto()
PtrArrayMxf8f6f4TmaWarpSpecialized1SmSm100 = enum_auto()
PtrArrayMxf8f6f4TmaWarpSpecialized2SmSm100 = enum_auto()
SparseTmaWarpSpecialized1SmSm100 = enum_auto()
SparseTmaWarpSpecialized2SmSm100 = enum_auto()
BlockScaledTmaWarpSpecialized1SmSm100 = enum_auto()
BlockScaledTmaWarpSpecialized2SmSm100 = enum_auto()
Mxf8f6f4TmaWarpSpecialized1SmSm100 = enum_auto()
Mxf8f6f4TmaWarpSpecialized2SmSm100 = enum_auto()
BlockwiseTmaWarpSpecialized1SmSm100 = enum_auto()
BlockwiseTmaWarpSpecialized2SmSm100 = enum_auto()
PtrArrayBlockwiseTmaWarpSpecialized1SmSm100 = enum_auto()
PtrArrayBlockwiseTmaWarpSpecialized2SmSm100 = enum_auto()
Mxf4TmaWarpSpecialized1SmSm100 = enum_auto()
Mxf4TmaWarpSpecialized2SmSm100 = enum_auto()
Nvf4TmaWarpSpecialized1SmSm100 = enum_auto()
Nvf4TmaWarpSpecialized2SmSm100 = enum_auto()
Mxf8f6f4TmaWarpSpecializedCooperativeSm120 = enum_auto()
Mxf8f6f4TmaWarpSpecializedPingpongSm120 = enum_auto()
Nvf4TmaWarpSpecializedCooperativeSm120 = enum_auto()
Nvf4TmaWarpSpecializedPingpongSm120 = enum_auto()
Mxf4TmaWarpSpecializedCooperativeSm120 = enum_auto()
Mxf4TmaWarpSpecializedPingpongSm120 = enum_auto()
F8f6f4SparseTmaWarpSpecializedCooperativeSm120 = enum_auto()
BlockwiseTmaWarpSpecializedCooperativeSm120 = enum_auto()
BlockwiseTmaWarpSpecializedPingpongSm120 = enum_auto()
KernelScheduleTag = {
KernelScheduleType.ScheduleAuto: "cutlass::gemm::collective::KernelScheduleAuto",
KernelScheduleType.Multistage: "cutlass::gemm::KernelMultistage",
KernelScheduleType.CpAsyncWarpSpecialized: "cutlass::gemm::KernelCpAsyncWarpSpecialized",
KernelScheduleType.CpAsyncWarpSpecializedPingpong: "cutlass::gemm::KernelCpAsyncWarpSpecializedPingpong",
KernelScheduleType.CpAsyncWarpSpecializedCooperative: "cutlass::gemm::KernelCpAsyncWarpSpecializedCooperative",
KernelScheduleType.Tma: "cutlass::gemm::KernelTma",
KernelScheduleType.TmaWarpSpecialized: "cutlass::gemm::KernelTmaWarpSpecialized",
KernelScheduleType.TmaWarpSpecializedPingpong: "cutlass::gemm::KernelTmaWarpSpecializedPingpong",
KernelScheduleType.TmaWarpSpecializedCooperative: "cutlass::gemm::KernelTmaWarpSpecializedCooperative",
KernelScheduleType.TmaWarpSpecializedFP8FastAccum: "cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum",
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum: "cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum",
KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum: "cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum",
KernelScheduleType.ImplicitTmaWarpSpecializedSm90: "cutlass::conv::KernelImplicitTmaWarpSpecializedSm90",
KernelScheduleType.BlockwiseTmaWarpSpecializedCooperative: "cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8BlockScaledAccum",
KernelScheduleType.TmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized1SmSm100",
KernelScheduleType.TmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized2SmSm100",
KernelScheduleType.ImplicitTmaWarpSpecialized1SmSm100: "cutlass::conv::KernelImplicitTmaWarpSpecialized1SmSm100",
KernelScheduleType.ImplicitTmaWarpSpecialized2SmSm100: "cutlass::conv::KernelImplicitTmaWarpSpecialized2SmSm100",
KernelScheduleType.PtrArrayTmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmSm100",
KernelScheduleType.PtrArrayTmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized2SmSm100",
KernelScheduleType.SparseTmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelSparseTmaWarpSpecialized1SmSm100",
KernelScheduleType.SparseTmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelSparseTmaWarpSpecialized2SmSm100",
KernelScheduleType.BlockScaledTmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized1SmBlockScaledSm100",
KernelScheduleType.BlockScaledTmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized2SmBlockScaledSm100",
KernelScheduleType.Mxf8f6f4TmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized1SmMxf8f6f4Sm100",
KernelScheduleType.Mxf8f6f4TmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized2SmMxf8f6f4Sm100",
KernelScheduleType.BlockwiseTmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100",
KernelScheduleType.BlockwiseTmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100",
KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise1SmSm100",
KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise2SmSm100",
KernelScheduleType.Mxf4TmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized1SmMxf4Sm100",
KernelScheduleType.Mxf4TmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized2SmMxf4Sm100",
KernelScheduleType.Nvf4TmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized1SmNvf4Sm100",
KernelScheduleType.Nvf4TmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelTmaWarpSpecialized2SmNvf4Sm100",
KernelScheduleType.PtrArrayTmaWarpSpecializedCooperative: "cutlass::gemm::KernelPtrArrayTmaWarpSpecializedCooperative",
KernelScheduleType.PtrArrayTmaWarpSpecializedCooperativeFP8FastAccum: "cutlass::gemm::KernelPtrArrayTmaWarpSpecializedCooperativeFP8FastAccum",
KernelScheduleType.PtrArrayTmaWarpSpecializedPingpong: "cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpong",
KernelScheduleType.PtrArrayTmaWarpSpecializedPingpongFP8FastAccum: "cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpongFP8FastAccum",
KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecializedCooperative: "cutlass::gemm::KernelPtrArrayTmaWarpSpecializedCooperativeFP8BlockScaledAccum",
KernelScheduleType.PtrArrayTmaWarpSpecialized1SmBlockScaledSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmBlockScaledSm100",
KernelScheduleType.PtrArrayTmaWarpSpecialized2SmBlockScaledSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized2SmBlockScaledSm100",
KernelScheduleType.PtrArrayNvf4TmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmNvf4Sm100",
KernelScheduleType.PtrArrayNvf4TmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized2SmNvf4Sm100",
KernelScheduleType.PtrArrayMxf4TmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmMxf4Sm100",
KernelScheduleType.PtrArrayMxf4TmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized2SmMxf4Sm100",
KernelScheduleType.PtrArrayMxf8f6f4TmaWarpSpecialized1SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmMxf8f6f4Sm100",
KernelScheduleType.PtrArrayMxf8f6f4TmaWarpSpecialized2SmSm100: "cutlass::gemm::KernelPtrArrayTmaWarpSpecialized2SmMxf8f6f4Sm100",
KernelScheduleType.Mxf8f6f4TmaWarpSpecializedCooperativeSm120: "cutlass::gemm::KernelTmaWarpSpecializedMxf8f6f4Sm120",
KernelScheduleType.Mxf8f6f4TmaWarpSpecializedPingpongSm120: "cutlass::gemm::KernelTmaWarpSpecializedPingpongMxf8f6f4Sm120",
KernelScheduleType.Nvf4TmaWarpSpecializedCooperativeSm120: "cutlass::gemm::KernelTmaWarpSpecializedNvf4Sm120",
KernelScheduleType.Nvf4TmaWarpSpecializedPingpongSm120: "cutlass::gemm::KernelTmaWarpSpecializedPingpongNvf4Sm120",
KernelScheduleType.Mxf4TmaWarpSpecializedCooperativeSm120: "cutlass::gemm::KernelTmaWarpSpecializedMxf4Sm120",
KernelScheduleType.Mxf4TmaWarpSpecializedPingpongSm120: "cutlass::gemm::KernelTmaWarpSpecializedPingpongMxf4Sm120",
KernelScheduleType.F8f6f4SparseTmaWarpSpecializedCooperativeSm120: "cutlass::gemm::KernelScheduleSparseF8f6f4Sm120",
KernelScheduleType.BlockwiseTmaWarpSpecializedCooperativeSm120: "cutlass::gemm::KernelTmaWarpSpecializedBlockwiseCooperativeSm120",
KernelScheduleType.BlockwiseTmaWarpSpecializedPingpongSm120: "cutlass::gemm::KernelTmaWarpSpecializedBlockwisePingpongSm120",
}
#
KernelScheduleSuffixes = {
KernelScheduleType.ScheduleAuto: "",
KernelScheduleType.Multistage: "_cpasync",
KernelScheduleType.CpAsyncWarpSpecialized: "_cpasync_warpspecialized",
KernelScheduleType.CpAsyncWarpSpecializedPingpong: "_cpasync_warpspecialized_pingpong",
KernelScheduleType.CpAsyncWarpSpecializedCooperative: "_cpasync_warpspecialized_cooperative",
KernelScheduleType.Tma: "_unspecialized",
KernelScheduleType.TmaWarpSpecialized: "_warpspecialized",
KernelScheduleType.TmaWarpSpecializedPingpong: "_warpspecialized_pingpong",
KernelScheduleType.TmaWarpSpecializedCooperative: "_warpspecialized_cooperative",
KernelScheduleType.TmaWarpSpecializedFP8FastAccum: "_warpspecialized_fp8_fastaccum",
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum: "_warpspecialized_cooperative_fp8_fastaccum",
KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum: "_warpspecialized_pingpong_fp8_fastaccum",
KernelScheduleType.ImplicitTmaWarpSpecializedSm90: "_warpspecialized",
KernelScheduleType.BlockwiseTmaWarpSpecializedCooperative: "_warpspecialized_cooperative",
KernelScheduleType.TmaWarpSpecialized1SmSm100: "_1sm",
KernelScheduleType.TmaWarpSpecialized2SmSm100: "_2sm",
KernelScheduleType.ImplicitTmaWarpSpecialized1SmSm100: "_1sm",
KernelScheduleType.ImplicitTmaWarpSpecialized2SmSm100: "_2sm",
KernelScheduleType.PtrArrayTmaWarpSpecialized1SmSm100: "_1sm",
KernelScheduleType.PtrArrayTmaWarpSpecialized2SmSm100: "_2sm",
KernelScheduleType.SparseTmaWarpSpecialized1SmSm100: "_1sm",
KernelScheduleType.SparseTmaWarpSpecialized2SmSm100: "_2sm",
KernelScheduleType.BlockScaledTmaWarpSpecialized1SmSm100: "_1sm",
KernelScheduleType.BlockScaledTmaWarpSpecialized2SmSm100: "_2sm",
KernelScheduleType.Mxf8f6f4TmaWarpSpecialized1SmSm100: "_q_1sm",
KernelScheduleType.Mxf8f6f4TmaWarpSpecialized2SmSm100: "_q_2sm",
KernelScheduleType.BlockwiseTmaWarpSpecialized1SmSm100: "_1sm",
KernelScheduleType.BlockwiseTmaWarpSpecialized2SmSm100: "_2sm",
KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecialized1SmSm100: "_1sm",
KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecialized2SmSm100: "_2sm",
KernelScheduleType.Mxf4TmaWarpSpecialized1SmSm100: "_o_vs32_1sm",
KernelScheduleType.Mxf4TmaWarpSpecialized2SmSm100: "_o_vs32_2sm",
KernelScheduleType.Nvf4TmaWarpSpecialized1SmSm100: "_o_vs16_1sm",
KernelScheduleType.Nvf4TmaWarpSpecialized2SmSm100: "_o_vs16_2sm",
KernelScheduleType.PtrArrayTmaWarpSpecializedCooperative: "_warpspecialized_cooperative",
KernelScheduleType.PtrArrayTmaWarpSpecializedCooperativeFP8FastAccum: "_warpspecialized_cooperative_fp8_fastaccum",
KernelScheduleType.PtrArrayTmaWarpSpecializedPingpong: "_warpspecialized_pingpong",
KernelScheduleType.PtrArrayTmaWarpSpecializedPingpongFP8FastAccum: "_warpspecialized_pingpong_fp8_fastaccum",
KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecializedCooperative: "_warpspecialized_cooperative",
KernelScheduleType.PtrArrayTmaWarpSpecialized1SmBlockScaledSm100: "_1sm",
KernelScheduleType.PtrArrayTmaWarpSpecialized2SmBlockScaledSm100: "_2sm",
KernelScheduleType.PtrArrayNvf4TmaWarpSpecialized1SmSm100: "_o_vs16_1sm",
KernelScheduleType.PtrArrayNvf4TmaWarpSpecialized2SmSm100: "_o_vs16_2sm",
KernelScheduleType.PtrArrayMxf4TmaWarpSpecialized1SmSm100: "_o_vs32_1sm",
KernelScheduleType.PtrArrayMxf4TmaWarpSpecialized2SmSm100: "_o_vs32_2sm",
KernelScheduleType.PtrArrayMxf8f6f4TmaWarpSpecialized1SmSm100: "_o_vs32_1sm",
KernelScheduleType.PtrArrayMxf8f6f4TmaWarpSpecialized2SmSm100: "_o_vs32_2sm",
KernelScheduleType.Mxf8f6f4TmaWarpSpecializedCooperativeSm120: "_cooperative_q",
KernelScheduleType.Mxf8f6f4TmaWarpSpecializedPingpongSm120: "_pingpong_q",
KernelScheduleType.Nvf4TmaWarpSpecializedCooperativeSm120: "_cooperative_o_vs16",
KernelScheduleType.Nvf4TmaWarpSpecializedPingpongSm120: "_pingpong_o_vs16",
KernelScheduleType.Mxf4TmaWarpSpecializedCooperativeSm120: "_cooperative_o_vs32",
KernelScheduleType.Mxf4TmaWarpSpecializedPingpongSm120: "_pingpong_o_vs32",
KernelScheduleType.F8f6f4SparseTmaWarpSpecializedCooperativeSm120: "_q",
KernelScheduleType.BlockwiseTmaWarpSpecializedCooperativeSm120: "_cooperative_q",
KernelScheduleType.BlockwiseTmaWarpSpecializedPingpongSm120: "_pingpong_q",
}
class EpilogueScheduleType(enum.Enum):
ScheduleAuto = enum_auto()
EpilogueTransposed = enum_auto()
NoSmemWarpSpecialized = enum_auto()
PtrArrayNoSmemWarpSpecialized = enum_auto()
NoSmemWarpSpecialized1Sm = enum_auto()
NoSmemWarpSpecialized2Sm = enum_auto()
PtrArrayNoSmemWarpSpecialized1Sm = enum_auto()
PtrArrayNoSmemWarpSpecialized2Sm = enum_auto()
TmaWarpSpecialized = enum_auto()
TmaWarpSpecializedCooperative = enum_auto()
TmaWarpSpecialized1Sm = enum_auto()
TmaWarpSpecialized2Sm = enum_auto()
PtrArrayTmaWarpSpecialized1Sm = enum_auto()
PtrArrayTmaWarpSpecialized2Sm = enum_auto()
PtrArrayTmaWarpSpecializedPingpong = enum_auto()
PtrArrayTmaWarpSpecializedCooperative = enum_auto()
#
EpilogueScheduleTag = {
EpilogueScheduleType.ScheduleAuto: "cutlass::epilogue::collective::EpilogueScheduleAuto",
EpilogueScheduleType.EpilogueTransposed: "cutlass::gemm::EpilogueTransposed",
EpilogueScheduleType.NoSmemWarpSpecialized: "cutlass::epilogue::NoSmemWarpSpecialized",
EpilogueScheduleType.PtrArrayNoSmemWarpSpecialized: "cutlass::epilogue::PtrArrayNoSmemWarpSpecialized",
EpilogueScheduleType.NoSmemWarpSpecialized1Sm: "cutlass::epilogue::NoSmemWarpSpecialized1Sm",
EpilogueScheduleType.NoSmemWarpSpecialized2Sm: "cutlass::epilogue::NoSmemWarpSpecialized2Sm",
EpilogueScheduleType.PtrArrayNoSmemWarpSpecialized1Sm: "cutlass::epilogue::PtrArrayNoSmemWarpSpecialized1Sm",
EpilogueScheduleType.PtrArrayNoSmemWarpSpecialized2Sm: "cutlass::epilogue::PtrArrayNoSmemWarpSpecialized2Sm",
EpilogueScheduleType.TmaWarpSpecialized: "cutlass::epilogue::TmaWarpSpecialized",
EpilogueScheduleType.TmaWarpSpecializedCooperative: "cutlass::epilogue::TmaWarpSpecializedCooperative",
EpilogueScheduleType.TmaWarpSpecialized1Sm: "cutlass::epilogue::TmaWarpSpecialized1Sm",
EpilogueScheduleType.TmaWarpSpecialized2Sm: "cutlass::epilogue::TmaWarpSpecialized2Sm",
EpilogueScheduleType.PtrArrayTmaWarpSpecialized1Sm: "cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm",
EpilogueScheduleType.PtrArrayTmaWarpSpecialized2Sm: "cutlass::epilogue::PtrArrayTmaWarpSpecialized2Sm",
EpilogueScheduleType.PtrArrayTmaWarpSpecializedCooperative: "cutlass::epilogue::PtrArrayTmaWarpSpecializedCooperative",
EpilogueScheduleType.PtrArrayTmaWarpSpecializedPingpong: "cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong",
}
#
EpilogueScheduleSuffixes = {
EpilogueScheduleType.ScheduleAuto: "",
EpilogueScheduleType.EpilogueTransposed: "",
EpilogueScheduleType.NoSmemWarpSpecialized: "_epi_nosmem",
EpilogueScheduleType.PtrArrayNoSmemWarpSpecialized: "_epi_nosmem",
EpilogueScheduleType.NoSmemWarpSpecialized1Sm: "_epi_nosmem",
EpilogueScheduleType.NoSmemWarpSpecialized2Sm: "_epi_nosmem",
EpilogueScheduleType.PtrArrayNoSmemWarpSpecialized1Sm: "_epi_nosmem",
EpilogueScheduleType.PtrArrayNoSmemWarpSpecialized2Sm: "_epi_nosmem",
EpilogueScheduleType.TmaWarpSpecialized: "_epi_tma",
EpilogueScheduleType.TmaWarpSpecializedCooperative: "_epi_tma",
EpilogueScheduleType.TmaWarpSpecialized1Sm: "",
EpilogueScheduleType.TmaWarpSpecialized2Sm: "_epi_tma",
EpilogueScheduleType.PtrArrayTmaWarpSpecialized1Sm: "_tma_1sm",
EpilogueScheduleType.PtrArrayTmaWarpSpecialized2Sm: "_tma_2sm",
EpilogueScheduleType.PtrArrayTmaWarpSpecializedCooperative: "_epi_tma",
EpilogueScheduleType.PtrArrayTmaWarpSpecializedPingpong: "_epi_tma",
}
class EpilogueFunctor3x(enum.Enum):
LinearCombination = enum_auto()
LinearCombinationBlockScaleFactor = enum_auto()
#
EpilogueFunctor3xTag = {
EpilogueFunctor3x.LinearCombination: "cutlass::epilogue::fusion::LinearCombination",
EpilogueFunctor3x.LinearCombinationBlockScaleFactor: "cutlass::epilogue::fusion::LinCombBlockScaleFactor",
}
# TMA epilogues have certain alignment requirements as calculated in get_tma_alignment(data_type)
def is_tma_epilogue(epilogue_schedule_type):
return epilogue_schedule_type in [
EpilogueScheduleType.ScheduleAuto,
EpilogueScheduleType.TmaWarpSpecialized,
EpilogueScheduleType.TmaWarpSpecializedCooperative,
EpilogueScheduleType.TmaWarpSpecialized1Sm,
EpilogueScheduleType.TmaWarpSpecialized2Sm,
EpilogueScheduleType.PtrArrayTmaWarpSpecialized1Sm,
EpilogueScheduleType.PtrArrayTmaWarpSpecialized2Sm,
EpilogueScheduleType.PtrArrayTmaWarpSpecializedCooperative,
EpilogueScheduleType.PtrArrayTmaWarpSpecializedPingpong,
]
def to_grouped_schedule(schedule, grouped):
if not grouped:
return schedule
group_schedule_map = {
# SM90
KernelScheduleType.TmaWarpSpecializedCooperative: KernelScheduleType.PtrArrayTmaWarpSpecializedCooperative,
KernelScheduleType.BlockwiseTmaWarpSpecializedCooperative: KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecializedCooperative,
KernelScheduleType.TmaWarpSpecializedPingpong: KernelScheduleType.PtrArrayTmaWarpSpecializedPingpong,
KernelScheduleType.TmaWarpSpecializedCooperativeFP8FastAccum: KernelScheduleType.PtrArrayTmaWarpSpecializedCooperativeFP8FastAccum,
KernelScheduleType.TmaWarpSpecializedPingpongFP8FastAccum: KernelScheduleType.PtrArrayTmaWarpSpecializedPingpongFP8FastAccum,
EpilogueScheduleType.TmaWarpSpecialized: EpilogueScheduleType.PtrArrayTmaWarpSpecializedPingpong,
EpilogueScheduleType.TmaWarpSpecializedCooperative: EpilogueScheduleType.PtrArrayTmaWarpSpecializedCooperative,
EpilogueScheduleType.NoSmemWarpSpecialized: EpilogueScheduleType.PtrArrayNoSmemWarpSpecialized,
# SM100
KernelScheduleType.TmaWarpSpecialized1SmSm100: KernelScheduleType.PtrArrayTmaWarpSpecialized1SmSm100,
KernelScheduleType.TmaWarpSpecialized2SmSm100: KernelScheduleType.PtrArrayTmaWarpSpecialized2SmSm100,
KernelScheduleType.Nvf4TmaWarpSpecialized1SmSm100: KernelScheduleType.PtrArrayNvf4TmaWarpSpecialized1SmSm100,
KernelScheduleType.Nvf4TmaWarpSpecialized2SmSm100: KernelScheduleType.PtrArrayNvf4TmaWarpSpecialized2SmSm100,
KernelScheduleType.Mxf4TmaWarpSpecialized1SmSm100: KernelScheduleType.PtrArrayMxf4TmaWarpSpecialized1SmSm100,
KernelScheduleType.Mxf4TmaWarpSpecialized2SmSm100: KernelScheduleType.PtrArrayMxf4TmaWarpSpecialized2SmSm100,
KernelScheduleType.Mxf8f6f4TmaWarpSpecialized1SmSm100: KernelScheduleType.PtrArrayMxf8f6f4TmaWarpSpecialized1SmSm100,
KernelScheduleType.Mxf8f6f4TmaWarpSpecialized2SmSm100: KernelScheduleType.PtrArrayMxf8f6f4TmaWarpSpecialized2SmSm100,
KernelScheduleType.BlockwiseTmaWarpSpecialized1SmSm100: KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecialized1SmSm100,
KernelScheduleType.BlockwiseTmaWarpSpecialized2SmSm100: KernelScheduleType.PtrArrayBlockwiseTmaWarpSpecialized2SmSm100,
EpilogueScheduleType.TmaWarpSpecialized1Sm: EpilogueScheduleType.PtrArrayTmaWarpSpecialized1Sm,
EpilogueScheduleType.TmaWarpSpecialized2Sm: EpilogueScheduleType.PtrArrayTmaWarpSpecialized2Sm,
}
return group_schedule_map[schedule]
class TileSchedulerType(enum.Enum):
Default = enum_auto()
Persistent = enum_auto()
StreamK = enum_auto()
#
TileSchedulerTag = {
TileSchedulerType.Default: "void",
TileSchedulerType.Persistent: "cutlass::gemm::PersistentScheduler",
TileSchedulerType.StreamK: "cutlass::gemm::StreamKScheduler",
}
#
TileSchedulerSuffixes = {
TileSchedulerType.Default: "",
TileSchedulerType.Persistent: "",
TileSchedulerType.StreamK: "_stream_k",
}
###################################################################################################
#
class SideMode(enum.Enum):
Left = enum_auto()
Right = enum_auto()
#
SideModeTag = {
SideMode.Left: "cutlass::SideMode::kLeft",
SideMode.Right: "cutlass::SideMode::kRight",
}
#
ShortSideModeNames = {SideMode.Left: "ls", SideMode.Right: "rs"}
###################################################################################################
#
class FillMode(enum.Enum):
Lower = enum_auto()
Upper = enum_auto()
#
FillModeTag = {
FillMode.Lower: "cutlass::FillMode::kLower",
FillMode.Upper: "cutlass::FillMode::kUpper",
}
#
ShortFillModeNames = {FillMode.Lower: "l", FillMode.Upper: "u"}
###################################################################################################
#
class DiagType(enum.Enum):
NonUnit = enum_auto()
Unit = enum_auto()
#
DiagTypeTag = {
DiagType.NonUnit: "cutlass::DiagType::kNonUnit",
DiagType.Unit: "cutlass::DiagType::kUnit",
}
#
ShortDiagTypeNames = {DiagType.NonUnit: "nu", DiagType.Unit: "un"}
###################################################################################################
#
class OpcodeClass(enum.Enum):
Simt = enum_auto()
TensorOp = enum_auto()
WmmaTensorOp = enum_auto()
SparseTensorOp = enum_auto()
BlockScaledTensorOp = enum_auto()
OpcodeClassNames = {
OpcodeClass.Simt: "simt",
OpcodeClass.TensorOp: "tensorop",
OpcodeClass.WmmaTensorOp: "wmma_tensorop",
OpcodeClass.SparseTensorOp: "sptensorop",
OpcodeClass.BlockScaledTensorOp: "bstensorop",
}
OpcodeClassTag = {
OpcodeClass.Simt: "cutlass::arch::OpClassSimt",
OpcodeClass.TensorOp: "cutlass::arch::OpClassTensorOp",
OpcodeClass.WmmaTensorOp: "cutlass::arch::OpClassWmmaTensorOp",
OpcodeClass.SparseTensorOp: "cutlass::arch::OpClassSparseTensorOp",
OpcodeClass.BlockScaledTensorOp: "cutlass::arch::OpClassBlockScaledTensorOp",
}
###################################################################################################
#
class OperationKind(enum.Enum):
Gemm = enum_auto()
RankK = enum_auto()
Rank2K = enum_auto()
Trmm = enum_auto()
Symm = enum_auto()
Conv2d = enum_auto()
Conv3d = enum_auto()
#
OperationKindNames = {
OperationKind.Gemm: "gemm",
OperationKind.RankK: "rank_k",
OperationKind.Rank2K: "rank_2k",
OperationKind.Trmm: "trmm",
OperationKind.Symm: "symm",
OperationKind.Conv2d: "conv2d",
OperationKind.Conv3d: "conv3d",
}
#
class Target(enum.Enum):
library = enum_auto()
#
ArchitectureNames = {
50: "maxwell",
60: "pascal",
61: "pascal",
70: "volta",
75: "turing",
80: "ampere",
89: "ada",
90: "hopper",
}
#
SharedMemPerCC = {
70: 96, # 96KB of SMEM
72: 96, # 96KB of SMEM
75: 64, # 64KB of SMEM
80: 163, # 163KB of SMEM - 1KB reserved for the driver
86: 99, # 99KB of SMEM - 1KB reserved for the driver
87: 163, # 163KB of SMEM - 1KB reserved for the driver
89: 99, # 99KB of SMEM - 1KB reserved for the driver
90: 227, # 227KB of SMEM - 1KB reserved for the driver
}
###################################################################################################
#
def SubstituteTemplate(template, values):
text = template
changed = True
while changed:
changed = False
for key, value in values.items():
regex = "\\$\\{%s\\}" % key
newtext = re.sub(regex, value, text)
if newtext != text:
changed = True
text = newtext
return text
###################################################################################################
#
class GemmKind(enum.Enum):
Gemm = enum_auto()
Sparse = enum_auto()
Universal = enum_auto()
Universal3x = enum_auto()
SparseUniversal3x = enum_auto()
PlanarComplex = enum_auto()
PlanarComplexArray = enum_auto()
Grouped = enum_auto()
BlockScaledUniversal3x = enum_auto()
GroupedUniversal3x = enum_auto()
GroupedBlockScaledUniversal3x = enum_auto()
BlockwiseUniversal3x = enum_auto()
GroupedBlockwiseUniversal3x = enum_auto()
#
GemmKindNames = {
GemmKind.Gemm: "gemm",
GemmKind.Sparse: "spgemm",
GemmKind.Universal: "gemm",
GemmKind.Universal3x: "gemm",
GemmKind.SparseUniversal3x: "spgemm",
GemmKind.PlanarComplex: "gemm_planar_complex",
GemmKind.PlanarComplexArray: "gemm_planar_complex_array",
GemmKind.Grouped: "gemm_grouped",
GemmKind.BlockScaledUniversal3x: "gemm",
GemmKind.GroupedUniversal3x: "gemm_grouped",
GemmKind.GroupedBlockScaledUniversal3x: "gemm_grouped",
GemmKind.BlockwiseUniversal3x: "gemm",
GemmKind.GroupedBlockwiseUniversal3x: "gemm_grouped",
}
#
class RankKKind(enum.Enum):
Universal = enum_auto()
#
RankKKindNames = {RankKKind.Universal: "rank_k"}
#
class TrmmKind(enum.Enum):
Universal = enum_auto()
#
TrmmKindNames = {TrmmKind.Universal: "trmm"}
#
class SymmKind(enum.Enum):
Universal = enum_auto()
#
SymmKindNames = {SymmKind.Universal: "symm"}
#
class EpilogueFunctor(enum.Enum):
LinearCombination = enum_auto()
LinearCombinationClamp = enum_auto()
#
EpilogueFunctorTag = {
EpilogueFunctor.LinearCombination: "cutlass::epilogue::thread::LinearCombination",
EpilogueFunctor.LinearCombinationClamp: "cutlass::epilogue::thread::LinearCombinationClamp",
}
#
class MixedInputMode(enum.Enum):
ConvertOnly = enum_auto()
ScaleOnly = enum_auto()
ScaleWithZeroPoint = enum_auto()
#
class SwizzlingFunctor(enum.Enum):
Identity1 = enum_auto()
Identity2 = enum_auto()
Identity4 = enum_auto()
Identity8 = enum_auto()
Horizontal = enum_auto()
StridedDgradIdentity1 = enum_auto()
StridedDgradIdentity4 = enum_auto()
StridedDgradHorizontal = enum_auto()
StreamK = enum_auto()
#
SwizzlingFunctorTag = {
SwizzlingFunctor.Identity1: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>",
SwizzlingFunctor.Identity2: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<2>",
SwizzlingFunctor.Identity4: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<4>",
SwizzlingFunctor.Identity8: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>",
SwizzlingFunctor.Horizontal: "cutlass::gemm::threadblock::GemmHorizontalThreadblockSwizzle",
SwizzlingFunctor.StridedDgradIdentity1: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<1>",
SwizzlingFunctor.StridedDgradIdentity4: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<4>",
SwizzlingFunctor.StridedDgradHorizontal: "cutlass::conv::threadblock::StridedDgradHorizontalThreadblockSwizzle",
SwizzlingFunctor.StreamK: "cutlass::gemm::threadblock::ThreadblockSwizzleStreamK",
}
#
class GroupScheduleMode(enum.Enum):
Device = (enum_auto(),)
Host = enum_auto()
#
GroupScheduleModeTag = {
GroupScheduleMode.Device: "cutlass::gemm::kernel::GroupScheduleMode::kDeviceOnly",
GroupScheduleMode.Host: "cutlass::gemm::kernel::GroupScheduleMode::kHostPrecompute",
}
#
ShortGroupScheduleModeNames = {
GroupScheduleMode.Device: "Device",
GroupScheduleMode.Host: "Host",
}
###################################################################################################
#
class ConvKind(enum.IntEnum):
Fprop = 0
Dgrad = 1
Wgrad = 2
#
ConvKindTag = {
ConvKind.Fprop: "cutlass::conv::Operator::kFprop",
ConvKind.Dgrad: "cutlass::conv::Operator::kDgrad",
ConvKind.Wgrad: "cutlass::conv::Operator::kWgrad",
}
ConvKindNames = {
ConvKind.Fprop: "fprop",
ConvKind.Dgrad: "dgrad",
ConvKind.Wgrad: "wgrad",
}
class ConvMode(enum.IntEnum):
CrossCorrelation = 0
Convolution = 1
#
class IteratorAlgorithm(enum.Enum):
Analytic = 0
Optimized = 1
FixedChannels = 2
FewChannels = 3
FixedStrideDilation = 4
#
IteratorAlgorithmTag = {
IteratorAlgorithm.Analytic: "cutlass::conv::IteratorAlgorithm::kAnalytic",
IteratorAlgorithm.Optimized: "cutlass::conv::IteratorAlgorithm::kOptimized",
IteratorAlgorithm.FixedChannels: "cutlass::conv::IteratorAlgorithm::kFixedChannels",
IteratorAlgorithm.FewChannels: "cutlass::conv::IteratorAlgorithm::kFewChannels",
IteratorAlgorithm.FixedStrideDilation: "cutlass::conv::IteratorAlgorithm::kFixedStrideDilation",
}
IteratorAlgorithmNames = {
IteratorAlgorithm.Analytic: "analytic",
IteratorAlgorithm.Optimized: "optimized",
IteratorAlgorithm.FixedChannels: "fixed_channels",
IteratorAlgorithm.FewChannels: "few_channels",
IteratorAlgorithm.FixedStrideDilation: "fixed_stride_dilation",
}
#
class StrideSupport(enum.Enum):
Strided = 0
Unity = 1
Fixed = 2
#
StrideSupportTag = {
StrideSupport.Strided: "cutlass::conv::StrideSupport::kStrided",
StrideSupport.Unity: "cutlass::conv::StrideSupport::kUnity",
StrideSupport.Fixed: "cutlass::conv::StrideSupport::kFixed",
}
StrideSupportNames = {
StrideSupport.Strided: "",
StrideSupport.Unity: "unity_stride",
StrideSupport.Fixed: "fixed_stride",
}
#
class GroupMode(enum.Enum):
NoneGroup = enum_auto() # dense conv (G=1)
SingleGroup = enum_auto() # grouped convolution (single group per CTA)
MultipleGroup = enum_auto() # grouped convolution ( multiple groups per CTA)
Depthwise = enum_auto() # Depthwise convolution ( C=K=G )
#
GroupModeTag = {
GroupMode.NoneGroup: "cutlass::conv::GroupMode::kNone",
GroupMode.SingleGroup: "cutlass::conv::GroupMode::kSingleGroup",
GroupMode.MultipleGroup: "cutlass::conv::GroupMode::kMultipleGroup",
GroupMode.Depthwise: "cutlass::conv::GroupMode::kDepthwise",
}
GroupModeNames = {
GroupMode.NoneGroup: "",
GroupMode.SingleGroup: "single_group",
GroupMode.MultipleGroup: "multiple_group",
GroupMode.Depthwise: "depthwise",
}
DynamicClusterShape = [0, 0, 1]
###################################################################################################
#
class MathInstruction:
def __init__(
self,
instruction_shape,
element_a,
element_b,
element_accumulator,
opcode_class,
math_operation=MathOperation.multiply_add,
element_scale_factor=None,
):
self.instruction_shape = instruction_shape
self.element_a = element_a
self.element_b = element_b
self.element_accumulator = element_accumulator
self.opcode_class = opcode_class
self.math_operation = math_operation
self.element_scale_factor = element_scale_factor
#
class TileDescription:
def __init__(
self,
threadblock_shape,
stages,
warp_count,
math_instruction,
min_compute,
max_compute,
cluster_shape=(1, 1, 1),
explicit_vector_sizes=None,
):
self.threadblock_shape = threadblock_shape
self.tile_shape = threadblock_shape
self.stages = stages
self.warp_count = warp_count
self.math_instruction = math_instruction
self.minimum_compute_capability = min_compute
self.maximum_compute_capability = max_compute
self.cluster_shape = cluster_shape
self.explicit_vector_sizes = explicit_vector_sizes
def procedural_name(self):
if self.minimum_compute_capability >= 90:
return "{tbm}x{tbn}x{tbk}_{cm}x{cn}x{ck}_{s}".format(
tbm=self.threadblock_shape[0],
tbn=self.threadblock_shape[1],
tbk=self.threadblock_shape[2],
cm=self.cluster_shape[0],
cn=self.cluster_shape[1],
ck=self.cluster_shape[2],
s=self.stages,
)
else:
return "%dx%d_%dx%d" % (
self.threadblock_shape[0],
self.threadblock_shape[1],
self.threadblock_shape[2],
self.stages,
)
class Direct2dConvFixedStrideDilationTileDescription:
def __init__(
self,
threadblock_output_shape,
filter_shape,
stages,
stride,
dilation,
warp_count,
math_instruction,
min_compute,
max_compute,
):
self.threadblock_shape = [
threadblock_output_shape[0]
* threadblock_output_shape[1]
* threadblock_output_shape[2],
threadblock_output_shape[3],
filter_shape[0] * filter_shape[1],
]
self.threadblock_output_shape = threadblock_output_shape
self.filter_shape = filter_shape
self.stages = stages
self.warp_count = warp_count
self.stride = stride
self.dilation = dilation
self.math_instruction = math_instruction
self.minimum_compute_capability = min_compute
self.maximum_compute_capability = max_compute
def procedural_name(self):
str_name = "%dx%dx%d_%dx%dx%dx%d_%d_filter%dx%d" % (
self.threadblock_shape[0],
self.threadblock_shape[1],
self.threadblock_shape[2],
self.threadblock_output_shape[0],
self.threadblock_output_shape[1],
self.threadblock_output_shape[2],
self.threadblock_output_shape[3],
self.stages,
self.filter_shape[0],
self.filter_shape[1],
)
# Fixed Strided and dilation
if self.stride != [-1, -1] and self.dilation != [-1, -1]:
str_name += "_stride%dx%d_dilation%dx%d" % (
self.stride[0],
self.stride[1],
self.dilation[0],
self.dilation[1],
)
return str_name
#
class TensorDescription:
def __init__(
self, element, layout, alignment=1, complex_transform=ComplexTransform.none
):
self.element = element
self.layout = layout
self.alignment = alignment
self.complex_transform = complex_transform
#
class SymmetricTensorDescription:
def __init__(
self,
element,
layout,
fill_mode,
alignment=1,
complex_transform=ComplexTransform.none,
side_mode=SideMode.Left,
):
self.element = element
self.layout = layout
self.fill_mode = fill_mode
self.alignment = alignment
self.complex_transform = complex_transform
self.side_mode = side_mode
#
class TriangularTensorDescription:
def __init__(
self,
element,
layout,
side_mode,
fill_mode,
diag_type,
alignment=1,
complex_transform=ComplexTransform.none,
):
self.element = element
self.layout = layout
self.side_mode = side_mode
self.fill_mode = fill_mode
self.diag_type = diag_type
self.alignment = alignment
self.complex_transform = complex_transform
#
def CalculateSmemUsage(operation):
cta_shape = operation.tile_description.threadblock_shape
stages = operation.tile_description.stages
if (
operation.operation_kind == OperationKind.Gemm
and operation.gemm_kind == GemmKind.Sparse
):
# Elements represented by 8 bits of metadata (based on 4:8, 2:4 or 1:2 sparsity)
if DataTypeSize[operation.A.element] == 32:
elements_per_8b_md = 2
elif DataTypeSize[operation.A.element] == 4:
elements_per_8b_md = 8
else:
elements_per_8b_md = 4
smem_per_stage = (
DataTypeSize[operation.A.element] * cta_shape[0] * (cta_shape[2] // 2) // 8
+ DataTypeSize[operation.B.element] * cta_shape[1] * cta_shape[2] // 8
+ cta_shape[0] * (cta_shape[2] // 2) // elements_per_8b_md
)
else:
# Few BLAS3 operations only have A tensor
data_type_size_a = DataTypeSize[operation.A.element]
data_type_size_b = DataTypeSize[operation.A.element]
if operation.is_mixed_input():
data_type_size_b = DataTypeSize[operation.B.element]
smem_per_stage = (
data_type_size_a * cta_shape[0] * cta_shape[2] // 8
+ data_type_size_b * cta_shape[1] * cta_shape[2] // 8
)
smem_usage = smem_per_stage * stages
return smem_usage >> 10
class GemmUniversalMode(enum.IntEnum):
"""
Types corresponding to GemmUniversalMode
"""
Gemm = 0
GemmSplitKParallel = 1
Batched = 2
Array = 3
class SplitKMode(enum.IntEnum):
"""
Types corresponding to SplitKMode
"""
NoneSplitK = 0
Serial = 1
Parallel = 2